Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Phương Thảo

Giải phương trình sau

a) \(x^4+5x^3-10x^2+10x+4=0\)

b) \(x^4-8x^2+x+12=0\)

Nguyễn Việt Lâm
2 tháng 4 2019 lúc 14:07

a/ Nhận thấy \(x=0\) không phải nghiệm, chia cả 2 vế của pt cho \(x^2\):

\(x^2+5x-10+\frac{10}{x}+\frac{4}{x^2}=0\)

\(\Leftrightarrow x^2+\frac{4}{x^2}+5\left(x+\frac{2}{x}\right)-10=0\)

Đặt \(x+\frac{2}{x}=a\Rightarrow x^2+4+\frac{4}{x^2}=a^2\Rightarrow x^2+\frac{4}{x^2}=a^2-4\)

Phương trình trở thành:

\(a^2-4+5a-10=0\)

\(\Leftrightarrow a^2+5a-14=0\) \(\Rightarrow\left[{}\begin{matrix}a=2\\a=-7\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{2}{x}=2\\x+\frac{2}{x}=-7\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-2x+2=0\left(vn\right)\\x^2+7x+2=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{-7+\sqrt{41}}{2}\\x=\frac{-7-\sqrt{41}}{2}\end{matrix}\right.\)

Nguyễn Việt Lâm
2 tháng 4 2019 lúc 14:13

b/ \(x^4-8x^2+x+12=0\)

\(\Leftrightarrow x^4-8x^2+16+x-4=0\)

\(\Leftrightarrow\left(x^2-4\right)^2+x-4=0\)

Đặt \(x^2-4=a\Rightarrow-4=a-x^2\)

Phương trình trở thành:

\(a^2+x+a-x^2=0\)

\(\Leftrightarrow\left(a-x\right)\left(a+x\right)+x+a=0\)

\(\Leftrightarrow\left(a-x+1\right)\left(x+a\right)=0\)

\(\Leftrightarrow\left(x^2-4-x+1\right)\left(x+x^2-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-3=0\\x^2+x-4=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{1\pm\sqrt{13}}{2}\\x=\frac{-1\pm\sqrt{17}}{2}\end{matrix}\right.\)


Các câu hỏi tương tự
Kim Taehyung
Xem chi tiết
Ánh Dương
Xem chi tiết
Dương Bảo Hùng
Xem chi tiết
hello hello
Xem chi tiết
Chén Tiêu
Xem chi tiết
chuthianhthu
Xem chi tiết
Kim Trí Ngân
Xem chi tiết
Hày Cưi
Xem chi tiết
An Mộc
Xem chi tiết