Cho x;y;z thỏa mãn (x2+1)(y2+4)(z2+9)=48xyz
Tính giá trị của A = \(\dfrac{x^3+y^3+z^3}{\left(x+y+z\right)^2}\)
Giải phương trình: \(\left(x^2+x+1\right)^2=3.\left(x^4+x^2+1\right)\)
thực hiện phép tính
a,\(x^3+\left[\frac{x\left(2y^3-x^3\right)}{x^3+y^3}\right]^3-\left[\frac{y\left(2x^3-y^3\right)}{x^3+y^3}\right]^3\)
b,\(\frac{\frac{x\left(x+y\right)}{x-y}+\frac{x\left(x+z\right)}{x-z}}{1+\frac{\left(y-z\right)^2}{\left(x-y\right)\left(x-z\right)}}+\frac{\frac{y\left(y+z\right)}{y-z}+\frac{y\left(y+x\right)}{y-x}}{1+\frac{\left(z-x\right)^2}{\left(y-z\right)\left(y-x\right)}}+\frac{\frac{z\left(z+x\right)}{z-x}+\frac{z\left(z+y\right)}{z-y}}{1+\frac{\left(x-y\right)^2}{\left(z-x\right)\left(z-y\right)}}\)
c,\(\left[\frac{y+z-2x}{\frac{\left(y-z\right)^3}{y^3-z^3}+\frac{\left(x-y\right)\left(x-z\right)}{y^2+yz+z^2}}+\frac{z+x-2y}{\frac{\left(z-x\right)^3}{z^3-x^3}+\frac{\left(y-z\right)\left(y-x\right)}{z^2+xz+x^2}}+\frac{x+y-2z}{\frac{\left(x-y\right)^3}{x^3-y^3}+\frac{\left(z-x\right)\left(z-y\right)}{x^2+xy+y^2}}\right]:\frac{1}{x+y+z}\)
Bài 1: Giải phương trình
\(a,\dfrac{x+1}{2009}+\dfrac{x+3}{2007}=\dfrac{x+5}{2005}+\dfrac{x+7}{1993}\)
\(b,\left(x+2\right)^4+\left(x+4\right)^4=14\)
\(c,\left(x-3\right)\left(x-2\right)x+1=60\)
d, \(2x^4+3x^3-x^2+3x+2=0\)
Giải phương trình
\(\left(x^2+x+1\right)^2=3\left(x^4+x^2+1\right)\)
\(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)
\(2x\left(8x-1\right)^2\left(4x-1\right)=9\)
\(\left(12x+7\right)^2\left(3x+2\right)\left(2x+1\right)=3\)
Giải phương trình:
\(a,\left|-5x\right|=3x-16\)
\(b,\left|2x+1\right|=\left|x-1\right|\)
\(c,\left|2x+1\right|-\left|5x-2\right|=3\)
Giải các phương trình :
\(a,\left(x^2-2x+1\right)-4=0\)
\(b,\left(x+1\right)^2=4\left(x^2-2x+1\right)^2\)
\(c,9\left(x-3\right)^2=4\left(x+2\right)^2\)
Giải các phương trình sau: \(\left(x-2\right)^4+\left(x-6\right)^4=82\)
Tính:
\(\dfrac{x^2-yz}{\left(x+y\right)\left(x+z\right)}+\dfrac{y^2-xz}{\left(y+z\right)\left(y+x\right)}+\dfrac{z^2-xy}{\left(z+x\right)\left(z+y\right)}\)
\(\dfrac{x^2}{\left(x-y\right)\left(x-z\right)}+\dfrac{y^2}{\left(y-x\right)\left(y-z\right)}+\dfrac{z^2}{\left(z-x\right)\left(z-y\right)}\)