Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Võ Thị Kim Dung

giải phương trình : \(\left(3x^2-6x\right)\left(\sqrt{2x-1}+1\right)=2x^3-5x^2+4x-4\)

Akai Haruma
12 tháng 5 2018 lúc 22:27

Lời giải:

ĐKXĐ:

\(x\geq \frac{1}{2}\)

Ta có: \((3x^2-6x)(\sqrt{2x-1}+1)=2x^3-5x^2+4x-4\)

\(\Leftrightarrow 3x(x-2)(\sqrt{2x-1}+1)=(2x^3-4x^2)-(x^2-4x+4)\)

\(\Leftrightarrow 3x(x-2)(\sqrt{2x-1}+1)=2x^2(x-2)-(x-2)^2=(x-2)(2x^2-x+2)\)

\(\Leftrightarrow (x-2)[3x(\sqrt{2x-1}+1)-(2x^2-x+2)]=0\)

\(\Rightarrow \left[\begin{matrix} x-2=0\rightarrow x=2\\ 3x(\sqrt{2x-1}+1)=2x^2-x+2(*)\end{matrix}\right.\)

Xét \((*)\)

\(\Leftrightarrow 3x\sqrt{2x-1}=2x^2-4x+2\)

\(\Leftrightarrow 3x\sqrt{8x-4}=4x^2-8x+4\)

\(\Leftrightarrow 3x(\sqrt{8x-4}-x)=x^2-8x+4\)

\(\Leftrightarrow 3x.\frac{8x-4-x^2}{\sqrt{8x-4}+x}=x^2-8x+4\)

\(\Leftrightarrow (x^2-8x+4)\left(1+\frac{3x}{\sqrt{8x-4}+x}\right)=0\)

Thấy rằng biểu thức trong ngoặc lớn luôn lớn hơn $0$ với mọi \(x\geq \frac{1}{2}\)

Do đó \(x^2-8x+4=0\Leftrightarrow x=4\pm 2\sqrt{3}\) (đều thỏa mãn)

Vậy..............


Các câu hỏi tương tự
Kim Trí Ngân
Xem chi tiết
Coodinator  Huy Toàn
Xem chi tiết
Coodinator  Huy Toàn
Xem chi tiết
Kim Trí Ngân
Xem chi tiết
Kathy Nguyễn
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Thị Bình Yên
Xem chi tiết
Nguyễn Thế Hiếu
Xem chi tiết
Đinh Doãn Nam
Xem chi tiết