Ta có: \(\frac{x-3}{2011}+\frac{x-2}{2012}=\frac{x-2012}{2}+\frac{x-2011}{3}\)
⇔\(\left(\frac{x-3}{2011}-1\right)+\left(\frac{x-2}{2012}-1\right)=\left(\frac{x-2012}{2}-1\right)+\left(\frac{x-2011}{3}-1\right)\)
\(\Leftrightarrow\frac{x-3-2011}{2011}+\frac{x-2-2012}{2012}=\frac{x-2012-2}{2}+\frac{x-2011-3}{3}\)
⇔\(\frac{x-2014}{2011}+\frac{x-2014}{2012}-\frac{x-2014}{2}-\frac{x-2014}{3}=0\)
⇔\(\left(x-2014\right)\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2}-\frac{1}{3}\right)=0\)
Vì \(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2}-\frac{1}{3}\ne0\) nên \(x-2014=0\)
hay x=2014
Vậy: x=2014