ĐKXĐ: \(x\ge\dfrac{-1}{3};x\ne0;1\)
\(\dfrac{1}{\left(x-1\right)^2}-\dfrac{1}{x^2}+\sqrt{3x+1}-\sqrt{x+2}=0\)
\(\Leftrightarrow\dfrac{x^2-\left(x-1\right)^2}{\left(x^2-x\right)^2}+\dfrac{2x-1}{\sqrt{3x+1}+\sqrt{x+2}}=0\)
\(\Leftrightarrow\dfrac{2x-1}{\left(x^2-x\right)^2}+\dfrac{2x-1}{\sqrt{3x+1}+\sqrt{x+2}}=0\)
\(\Leftrightarrow\left(2x-1\right)\left(\dfrac{1}{\left(x^2-x\right)^2}+\dfrac{1}{\sqrt{3x+1}+\sqrt{x+2}}\right)=0\)
\(\Leftrightarrow2x-1=0\) (do \(\dfrac{1}{\left(x^2-x\right)^2}+\dfrac{1}{\sqrt{3x+1}+\sqrt{x+2}}>0\) )
\(\Rightarrow x=\dfrac{1}{2}\)