\(\dfrac{10}{x^2-4}+\dfrac{1}{2-x}=1\)
<=> \(\dfrac{-10}{\left(2-x\right)\left(2+x\right)}+\dfrac{2+x}{\left(2-x\right)\left(2+x\right)}=\dfrac{\left(2-x\right)\left(2+x\right)}{\left(2-x\right)\left(2+x\right)}\)
<=>\(-10+2+x=\left(2-x\right)\left(2+x\right)\)
<=> \(-12+x+x^2=0\)
\(\Delta=1^2-4.\left(-12\right)=49\) => \(\sqrt{\Delta}=\sqrt{49}=7\)
Do \(\Delta>0\) nên phương trình có 2 nghiệm phân biệt là:
\(x_1=\dfrac{-1+7}{2}=3\)
\(x_2=\dfrac{-1-7}{2}=-4\)