\(a,\Leftrightarrow\dfrac{\left(3x+4\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}=\dfrac{4+3x^2-12}{\left(x-2\right)\left(x+2\right)}\)
ĐKXĐ:\(x\ne2;x\ne-2\)
\(\Rightarrow3x^2+10x+8-x+2-4-3x^2+12=0\)
\(\Leftrightarrow\)\(9x+18=0\)
\(\Leftrightarrow x=-2\)(loại).
Vậy phương trình vô nghiệm.
b,ĐKXĐ:\(x\ne\dfrac{1}{2}\)
PT đã cho \(\Rightarrow6x^2-4x+6-6x^2+13x-5=0\)
\(\Leftrightarrow9x+1=0\)
\(\Leftrightarrow x=-\dfrac{1}{9}\left(tmđk\right)\)
c,\(ĐKXĐ:x\ge2\)
Bình phương 2 vế ta được:
\(x^2-4-x^2+2x-1=0\)
\(\Leftrightarrow2x-5=0\)
\(\Leftrightarrow x=\dfrac{5}{2}\left(tmđk\right)\)