ĐKXĐ: \(0\le x\le9\)
\(\Leftrightarrow x-4\sqrt{x}+4+\sqrt{x+16}+\sqrt{9-x}=-3\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+\sqrt{x+16}+\sqrt{9-x}=-3\)
Vế trái luôn dương, vế phải âm
Vậy pt vô nghiệm
ĐKXĐ: \(0\le x\le9\)
\(\Leftrightarrow x-4\sqrt{x}+4+\sqrt{x+16}+\sqrt{9-x}=-3\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+\sqrt{x+16}+\sqrt{9-x}=-3\)
Vế trái luôn dương, vế phải âm
Vậy pt vô nghiệm
Giải phương trình:
a) \(x + \sqrt{9 -x^2} = 3 + 5x\sqrt{9 - x^2}\)
b) \(3\sqrt{1 - x^2} = 5\sqrt{1 + x} - 4\sqrt{1 - x} + x + 6\)
c) \(x + 2 + 4\sqrt{x^2 - x + 2} = 2\sqrt{6x^2 - x + 14}\)
Cho biểu thức \(A=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
Tìm x để thỏa mãn phương trình sau:
\(A.\left(\sqrt{x}-2\right)+5\sqrt{x}=x+4+\sqrt{x+16}+\sqrt{9-x}\)
Giair phương trình:
1) \(\sqrt[5]{32-x^2}-\sqrt[5]{1-x^2}=4\)
2) \(\sqrt{x}+\sqrt[4]{20-x}=4\)
3) \(x^3+1=2\sqrt{3x-1}\)
4) \(\sqrt[3]{x-1}+3=\sqrt[4]{82-x}\)
5)
\(a.\left(x+3\sqrt{x}+2\right)\left(x+9\sqrt{x}+18\right)=168x\)
\(b.\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}=5\sqrt{x+1}\)
giải các phương trình sau:
\(\sqrt{x^2+6x+9}=3x-6\)
\(\sqrt{x^2-2x+1}=\sqrt{4x^2-4x+1}\)
\(\sqrt{4-5x}=2-5x\)
\(\sqrt{4-5x}=\sqrt{2-5x}\)
Giải phương trình sau:
\(\left(x-3\right)\sqrt{x^2-4}=x^2-9\)
Giải phương trình:
\(\sqrt{1-x}+\sqrt{4+x}=3\)
Giải phương trình
\(a.\dfrac{3}{4}\sqrt{4x}-\sqrt{4x}+5=\dfrac{1}{4}\sqrt{4x}\)
\(b.\sqrt{3-x}-\sqrt{27-9x}+1,25.\sqrt{48-16x}=6\)
\(c.\dfrac{5\sqrt{x}-2}{8\sqrt{x}+2,5}=\dfrac{2}{7}\)
\(d.\sqrt{9x^2+12x+4}=4\)
Giải phương trình:
1. \(\sqrt{\dfrac{42}{5-x}}+\sqrt{\dfrac{60}{7-x}}=6\)
2. \(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
3. \(x^2+x+12\sqrt{x+1}=36\)
4. \(\sqrt{x+2}-\sqrt{x-6}=2\)
5. \(\sqrt[3]{x-1}-\sqrt[3]{x-3}=\sqrt[3]{2}\)
6. \(5\sqrt{1+x^3}=2\left(x^2+2\right)\)
6. \(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\)
giải phương trình
\(9+3\sqrt{x\left(3-2x\right)}=7\sqrt{x}+5\sqrt{3-2x}\)