ĐKXĐ: \(x\ge\frac{1}{8}\)
\(3x^3+9x^2+9x+3+2x^2-12x+4-3\sqrt{8x-1}\left(8x-1\right)=0\)
\(\Leftrightarrow3\left(x+1\right)^3+2x^2+4x+2-16x+2-3\sqrt{\left(8x-1\right)^3}=0\)
\(\Leftrightarrow3\left(x+1\right)^3+2\left(x+1\right)^2-3\sqrt{\left(8x-1\right)^3}-2\left(8x-1\right)=0\)
Đặt \(\left\{{}\begin{matrix}x+1=a>0\\\sqrt{8x-1}=b\ge0\end{matrix}\right.\) phương trình trở thành:
\(3a^3+2a^2-3b^3-2b^2=0\)
\(\Leftrightarrow3\left(a-b\right)\left(a^2+ab+b^2\right)+2\left(a+b\right)\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(3a^2+3ab+3b^2+2a+2b\right)=0\)
\(\Leftrightarrow a-b=0\) (do \(\left\{{}\begin{matrix}a>0\\b\ge0\end{matrix}\right.\) \(\Rightarrow3a^2+3ab+3b^2+2a+2b>0\))
\(\Rightarrow a=b\Rightarrow x+1=\sqrt{8x-1}\)
\(\Leftrightarrow\left(x+1\right)^2=8x-1\)
\(\Leftrightarrow x^2-6x+2=0\Rightarrow x=3\pm\sqrt{7}\)