Lời giải:
ĐKXĐ: $x\geq 1$ hoặc $x\leq \frac{1}{2}$
Đặt $\sqrt{2x^2-3x+1}=a$ (ĐK: $a\geq 0$)
PT $\Leftrightarrow 3(2x^2-3x+1)+4x^2-8x\sqrt{2x^2-3x+1}=0$
$\Leftrightarrow 3a^2+4x^2-8xa=0$
$\Leftrightarrow (a-2x)(3a-2x)=0$
Nếu $a-2x=0$
$\Rightarrow a^2-4x^2=0\Leftrightarrow -2x^2-3x+1=0$
$\Rightarrow x=\frac{-3\pm \sqrt{17}}{4}$.
Mà từ đkxđ và $a-2x\Rightarrow 2x=a\geq 0\rightarrow x\geq 0$ ta suy ra $x=\frac{-3+\sqrt{17}}{4}$
Nếu $3a-2x=0$
$\Rightarrow 9a^2-4x^2=0$
$\Leftrightarrow 9(2x^2-3x+1)-4x^2=0$
Ta giải ra được $x=\frac{3}{2}$ hoặc $x=\frac{3}{7}$ (đều thỏa mãn)
Vậy......