a)\(VT=y^2-2y+3=\left(y-1\right)^2+2\ge2\)
\(VP=\dfrac{6}{x^2+2x+4}=\dfrac{6}{\left(x+1\right)^2+3}\le\dfrac{6}{3}=2\)
Dấu "=" xảy ra khi: \(y=1;x=-1\)
b) Áp dụng bất đẳng thức AM-GM:
\(\sqrt{x-a}\le\dfrac{x-a+1}{2}\)
\(\sqrt{y-b}\le\dfrac{y-b+1}{2}\)
\(\sqrt{z-c}\le\dfrac{z-c+1}{2}\)
Cộng theo vế:
\(VT\le\dfrac{x-a+1+y-b+1+z-c+1}{2}=\dfrac{x+y+z}{2}=VP\)
Dấu "=" xảy ra khi: \(x=y=z=2\)