Nhận thấy \(x=0\) hay \(y=0\) đều không phải nghiệm của hệ, hệ tương đương:
\(\left\{{}\begin{matrix}\frac{\left(x^2+2x+1\right)\left(y^2+2y+1\right)}{xy}=27\\\frac{\left(x^2+1\right)\left(y^2+1\right)}{xy}=10\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+\frac{1}{x}+2\right)\left(y+\frac{1}{y}+2\right)=27\\\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)=10\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+\frac{1}{x}=a\\y+\frac{1}{y}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(a+2\right)\left(b+2\right)=27\\ab=10\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a+b=\frac{13}{2}\\ab=10\end{matrix}\right.\)
Theo Viet đảo, a;b là nghiệm của: \(t^2-\frac{13}{2}t+10=0\Rightarrow\left[{}\begin{matrix}t=4\\t=\frac{5}{2}\end{matrix}\right.\)
- Với \(\left\{{}\begin{matrix}a=4\\b=\frac{5}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+\frac{1}{x}=4\\y+\frac{1}{y}=\frac{5}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2-4x+1=0\\y^2-\frac{5}{2}y+1=0\end{matrix}\right.\) \(\Rightarrow...\)
- Với \(\left\{{}\begin{matrix}a=\frac{5}{2}\\b=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^2-\frac{5}{2}x+1=0\\y^2-4y+1=0\end{matrix}\right.\) \(\Rightarrow...\)