\(x^2-\left(3y+2\right)x+2y^2+4y=0\)
\(\Delta=\left(3y+2\right)^2-4\left(2y^2+4y\right)=y^2-4y+4=\left(y-2\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{3y+2-y+2}{2}=y+2\\x=\frac{3y+2+y-2}{2}=2y\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=x-2\\2y=x\end{matrix}\right.\)
TH1: \(\) \(y=x-2\)
\(\left(x^2-5\right)^2=2x-2\left(x-2\right)+5\)
\(\Leftrightarrow\left(x^2-5\right)^2=9\Rightarrow\left[{}\begin{matrix}x^2-5=3\\x^2-5=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2=8\\x^2=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\pm2\sqrt{2}\Rightarrow y=-2\pm2\sqrt{2}\\x=\pm\sqrt{2}\Rightarrow y=-2\pm\sqrt{2}\end{matrix}\right.\)
TH2: \(2y=x\)
\(\Leftrightarrow\left(x^2-5\right)^2=2x-x+5\Leftrightarrow\left(x^2-5\right)^2=x+5\)
Đặt \(x^2-5=a\Rightarrow5=x^2-a\) pt trở thành:
\(a^2=x+x^2-a\Leftrightarrow x^2-a^2+x-a=0\)
\(\Leftrightarrow\left(x-a\right)\left(x+a\right)+x-a=0\)
\(\Leftrightarrow\left(x-a\right)\left(x+a+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a-x=0\\a+x+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-x-5=0\\x^2-5+x+1=0\end{matrix}\right.\) \(\Leftrightarrow...\)
Bạnt ự giải nốt