Giải hệ phương trình:
a)\(\left\{{}\begin{matrix}x^2+xy+y^2=4\\x+xy+y=2\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}x^3=2y+1\\y^3=2x+1\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}x+y-\sqrt{xy}=3\\\sqrt{x+1}+\sqrt{y+1}=4\end{matrix}\right.\)
Giải hệ pt:
a)\(\left\{{}\begin{matrix}x^2+y^2+x+y=18\\x\left(x+1\right).y\left(y+1\right)=72\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y+1}=1\\3y-1=xy\end{matrix}\right.\) c)\(\left\{{}\begin{matrix}2x+3y=xy+5\\\frac{1}{x}+\frac{1}{y+1}=1\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\sqrt{\frac{x}{y}}-3\sqrt{\frac{y}{x}}=2\\x-y+xy=1\end{matrix}\right.\) e)\(\left\{{}\begin{matrix}xy+x+y=x^2-2y^2\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{matrix}\right.\)
HELP ME :((
Giải hệ phương trình:
1, \(\left\{{}\begin{matrix}x^2+1+y^2+xy=y\\x+y-2=\frac{y}{1+x^2}\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^3+8y^3-4xy^2=1\\2x^4+8y^4-2x-y=0\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}x^2+y^2=\frac{1}{5}\\4x^2+3x-\frac{57}{25}=-y\left(3x+1\right)\end{matrix}\right.\)
4, \(\left\{{}\begin{matrix}\sqrt{12-y}+\sqrt{y\left(12-x\right)}=12\\x^3-8x-1=2\sqrt{y-2}\end{matrix}\right.\)
5, \(\left\{{}\begin{matrix}\left(1-y\right)\sqrt{x-y}+x=2+\left(x-y-1\right)\sqrt{y}\\2y^2-3x+6y+1=2\sqrt{x-2y}-\sqrt{4x-5y-3}\end{matrix}\right.\)
Giải hệ phương trình:
a)\(\left\{{}\begin{matrix}x+y-\sqrt{xy}=3\\\sqrt{x+1}+\sqrt{y+1}=4\end{matrix}\right.\) \(\left(x,y\in R\right)\)
b) \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt[4]{32-x}=y^2-3\\\sqrt[4]{x}+\sqrt{32-x}=24-6y\end{matrix}\right.\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}x+3\sqrt{xy+x-y^2-y}=5y+4\\\sqrt{4y^2-x-2}+\sqrt{y-1}=x-1\end{matrix}\right.\)
Giải hệ phương trình \(\left\{{}\begin{matrix}x^2+xy^2-xy-y^3=0\\2\left(x^2+1\right)-3\sqrt{x}\left(y+1\right)-y=0\end{matrix}\right.\)
Giai hệ phương trình:
1,\(\left\{{}\begin{matrix}\sqrt{x+1}+\sqrt{y}=4\\x+y=7\end{matrix}\right.\) 2,\(\left\{{}\begin{matrix}x^2+y^{^2}-xy=1\\x^3+y^3=x+3y\end{matrix}\right.\) 3,\(\left\{{}\begin{matrix}6x^2-3xy+x+y=1\\x^2+y^2=1\end{matrix}\right.\)
Giải hệ phương trình sau:
\(\left\{{}\begin{matrix}\sqrt{x}+\dfrac{3}{\sqrt{x}}=\sqrt{y}+\dfrac{3}{\sqrt{y}}\\2x-\sqrt{xy}-1=0\end{matrix}\right.\)
CHUYÊN ĐỀ PHƯƠNG TRÌNH - HỆ PHƯƠNG TRÌNH CHỌN LỌC
Bài 1: Giải phương trình ẩn x sau :
a) \(\sqrt{\frac{1}{x+3}}+\sqrt{\frac{5}{x+4}}=4\)
b) \(\sqrt[8]{1-x}+\sqrt[3]{1+x}+\sqrt[8]{1-x^2}=3\)
Bài 2: Giải hệ phương trình :
a) \(\left\{{}\begin{matrix}x^4-x^3+3x^2-4y-1=0\\\sqrt{\frac{x^2+4y^2}{2}}+\sqrt{\frac{x^2+2xy+4y^2}{3}}=x+2y\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\frac{y}{2x+1}=\frac{\sqrt{2x+1}+1}{\sqrt{y}+1}\\4x^2+5=y^2\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x^2-xy+y^2=3\\z^2+yz+1=0\end{matrix}\right.\)
P/s: ai có lời giải đúng, đẹp tặng 1GP mỗi phần.