Ôn tập toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Khánh Ngọc

Bài tập Toángiải hộ mk

Phạm Thị Thu Ngân
19 tháng 3 2017 lúc 17:25

bài 1:

xét tam giác ABC và tam giác HBA có

góc B chung, góc BAC = góc BHA (=900)

=> tam giác ABC đồng dạng với tam giác HBA (g-g)

=> \(\dfrac{AB}{BH}=\dfrac{BC}{AB}=>BC=\dfrac{AB.AB}{BH}\)

=> \(BC=\dfrac{8.8}{5}=\dfrac{64}{5}=12.8\)

Phạm Thị Thu Ngân
19 tháng 3 2017 lúc 17:43

bài 2:

Xét tam giác ABC và tam giác HBA có:

góc B chung, góc BAC = góc BHA (=900)

=> tam giác ABC đồng dạng với tam giác HBA (g-g)

=> \(\dfrac{AB}{BH}=\dfrac{BC}{AB}=>AB.AB=BC.BH\)

=> \(AB^2=\left(BH+CH\right).BH\)

=> \(AB^2=\left(9+16\right).9=25.9=225\) => \(AB=\sqrt{225}=15\left(cm\right)\)

áp dụng định lí py-ta-go vào tam giác vuông ABC có:

\(AC^2=BC^2-AB^2=25^2-15^2=400\)

=> \(AC=\sqrt{400}=20\left(cm\right)\)

Vậy chu vi tam giác ABC =AB+BC+AC=15+25+20=60 (cm)

Phạm Thị Thu Ngân
19 tháng 3 2017 lúc 17:57

bài 3:

a) Ta có: \(\dfrac{AE}{AD}=\dfrac{AC-CE}{AB-BD}=\dfrac{16-13}{8-2}=\dfrac{3}{6}=\dfrac{1}{2}\)

\(\dfrac{AB}{AC}=\dfrac{8}{16}=\dfrac{1}{2}\)

Xét tam giác AEB và tam giác ADC có:

góc A chung, \(\dfrac{AE}{AD}=\dfrac{AB}{AC}=\dfrac{1}{2}\)

=> tam giác AEB đồng dạng với tam giác ADC (c-g-c)

b) chưa làm đc.

c) \(AE.AC=3.16=48\left(cm\right)\left(1\right)\)

\(AD.AB=6\cdot8=48\left(cm\right)\left(2\right)\)

từ (1)(2)=> AE.AC=AD.AB (=48)

Nguyễn Mỹ Hoa
24 tháng 3 2017 lúc 21:32

bài 1:áp dụng định lí pitago vào tam giác ABH ta có : AH^2 = BA^2 - BH^2 AH^2=64-25 AH = căn 39 mà bình phương đg cao tg ứng vs cạnh huyền thì bằng tích 2 hình chiếu của 2 cạnh góc vg nên ta có: HC=AH^2 chia 5 HC=7.8 Suy ra BC = HC +HB BC = 7.8 +5 =12.8


Các câu hỏi tương tự
Phạm Khánh Ngọc
Xem chi tiết
Phạm Khánh Ngọc
Xem chi tiết
Phạm Khánh Ngọc
Xem chi tiết
Phạm Khánh Ngọc
Xem chi tiết
Phạm Khánh Ngọc
Xem chi tiết
namblue
Xem chi tiết
namblue
Xem chi tiết
bella nguyen
Xem chi tiết
Đặng Khánh Ngọc
Xem chi tiết