Giải:
\(\left(x^2+1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x-2\right)^2=0\)
Vì \(x^2+1\ge1>0\forall x\)
Nên \(\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy ...
⇒(x2+1) (x-2) = 0
⇒\(\left[{}\begin{matrix}x^2+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(otm\right)\\x=2\left(tm\right)\end{matrix}\right.\)