Ta có: \(a^2+b^2+c^2>2\left(a+b+c\right)\)
\(\Leftrightarrow\) \(a^2+b^2+c^2+3>2\left(a+b+c\right)\) (Vì 3>0)
\(\Leftrightarrow\) \(a^2+b^2+c^2-2a-2b-2c+3>0\)
\(\Leftrightarrow\) \(\left(a^2-2a+1\right)\)+\(\left(b^2-2b+1\right)\)+\(\left(c^2-2c+1\right)\) \(>0\)
\(\Leftrightarrow\) \(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2>0\) (luôn đúng \(\forall a,b,c\))
Vậy \(\forall a,b,c\) thì \(a^2+b^2+c^2>2\left(a+b+c\right)\)