áp dụng BĐT Cauchy ngược dấu:
\(x+y=3+\sqrt{xy}\le3+\frac{x+y}{2}\)
\(=>\frac{x+y}{2}\le3=>x+y\le6\left(1\right)\)
\(4=\sqrt{x+1}+\sqrt{y+1}\)
=> \(8=\sqrt{4\left(x+1\right)}+\sqrt{4\left(y+1\right)}\le\frac{4\left(x+1\right)}{2}+\frac{4\left(y+1\right)}{2}=>x+y\ge6\left(2\right)\)
từ (1) và (2) => x+ y = 6
<=> \(\left\{{}\begin{matrix}x=y\\4=\left(x+1\right)=>x=y=3\\4=\left(y+1\right)\end{matrix}\right.\)
vậy hpt có No (x; y) = (3;3)