Giải các hệ phương trình
a) \(\left\{{}\begin{matrix}x+y+xy=3\\x^2y+xy^2=2\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}x^2+y^2=2\left(xy+2\right)\\x+y=6\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x^2-2x=y\\y^2-2y=x\end{matrix}\right.\) d) \(\left\{{}\begin{matrix}2x^2-xy+3y^2=13\\x^2+4xy-2t^2=-6\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}2x^2-y^2=1\\xy+x^2=2\end{matrix}\right.\)
Giải các hệ phương trình
a) \(\left\{{}\begin{matrix}x+y+xy=3\\x^2y+xy^2=2\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}x^2+y^2=2\left(xy+2\right)\\x+y=6\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x^2-2x=y\\y^2-2y=x\end{matrix}\right.\) d) \(\left\{{}\begin{matrix}2x^2-xy+3y^2=13\\x^2+4xy-2y^2=-6\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}2x^2-y^2=1\\xy+x^2=2\end{matrix}\right.\) f) \(\left\{{}\begin{matrix}x^2-y^2=1-xy\\x^2+y^2=3xy+11\end{matrix}\right.\)
Cần gấp lắm, ai giúp với
Giải hệ phương trình:
a)\(\left\{{}\begin{matrix}\dfrac{3x+2}{x-1}-\dfrac{3y-1}{y+2}=0\\\dfrac{2}{x-1}+\dfrac{3}{y+2}=1\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\dfrac{4x-5}{x+1}+\dfrac{2y-3}{y-5}=8\\\dfrac{3}{x+1}-\dfrac{2}{y-5}=-1\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}\dfrac{x+y-2}{x+1}+\dfrac{3-x}{y+1}=\dfrac{5}{4}\\\dfrac{3\left(x+y-2\right)}{x+1}-\dfrac{5-x+2y}{y+1}=\dfrac{3}{4}\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\dfrac{x-y+1}{x-3}+\dfrac{x+1}{y-3}=\dfrac{-7}{2}\\\dfrac{2\left(x-y+1\right)}{x-3}-\dfrac{x+y-2}{y-3}=-\dfrac{9}{2}\end{matrix}\right.\)
e)\(\left\{{}\begin{matrix}x^2-y^2+2y=1\\\left(x+y\right)^2-2x-2y=0\end{matrix}\right.\)
f)\(\left\{{}\begin{matrix}4x^2+y^2-4xy=4\\x^2+y^2-2\left(xy+8\right)=0\end{matrix}\right.\)
Giải hệ phương trình:
a)\(\left\{{}\begin{matrix}\left|2x-y\right|-2\left|y-x\right|=1\\3\left|2x-y\right|+\left|x+y\right|=10\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\left(\dfrac{x}{y}\right)^2+\left(\dfrac{x}{y}\right)^3=12\\\left(xy\right)^2+xy=6\end{matrix}\right.\)
giả các hệ phương trình sau :
a) \(\left\{{}\begin{matrix}\dfrac{-3}{x-y+1}+\dfrac{1}{x +y-2}=12\\\dfrac{2}{x-y+1}-\dfrac{3}{x+y-2}=-1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^2+2\left(y^2+2y\right)=10\\3x^2-\left(y^2+2y\right)=9\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\dfrac{7}{\sqrt{x-1}}-\dfrac{5}{\sqrt{y+2}}=\dfrac{9}{2}\\\dfrac{3}{\sqrt{x-1}}+\dfrac{2}{\sqrt{y+2}}=4\end{matrix}\right.\)
Giải hệ phương trình:
a)\(\left\{{}\begin{matrix}x^2+xy+y^2=4\\x+xy+y=2\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}x^3=2y+1\\y^3=2x+1\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}x+y-\sqrt{xy}=3\\\sqrt{x+1}+\sqrt{y+1}=4\end{matrix}\right.\)
Giải hệ phương trình :
a, \(\left\{{}\begin{matrix}\left(x+y-2\right)\left(2x-y\right)=0\\x^2+y^2=2\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}x^2+y^2+2x+2y=6\\x+y-3xy+1=0\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}x^2+4x=5y\\y^2+4y=5x\end{matrix}\right.\)
d,\(\left\{{}\begin{matrix}x^2+2y^2+xy=4\\2x^2+xy+3y^2=6\end{matrix}\right.\)
e,\(\left\{{}\begin{matrix}4x^2+8x=5y\\y^2+4y=10x\end{matrix}\right.\)
Giải phương trình:
1. \(\left\{{}\begin{matrix}5x-2y=-9\\4x+3y=2\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}2x+y-4=0\\x+2y-5=0\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}2x+3y-7=0\\x+2y-4=0\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}5x+6y=17\\9x-y=7\end{matrix}\right.\)
giải hệ pt bằng phương pháp thế:
1) \(\left\{{}\begin{matrix}x+y=3\\x+2y=5\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}x-y=3\\y=2x+1\end{matrix}\right.\)
3) \(\left\{{}\begin{matrix}2x+3y=4\\y-x=-2\end{matrix}\right.\)
4) \(\left\{{}\begin{matrix}x=y+2\\x=3y+8\end{matrix}\right.\)
5) \(\left\{{}\begin{matrix}2x-y=1\\3x-4y=2\end{matrix}\right.\)
giúp mk vs ạ mai mk hc rồi