Chương III - Hệ hai phương trình bậc nhất hai ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thái Viết Nam

Giải hệ phương trình:

\(\left\{{}\begin{matrix}xy^2+2x-4y=-1\\x^2y^3+2xy^2-4x+3y=2\end{matrix}\right.\)

svtkvtm
13 tháng 10 2019 lúc 10:51

\(hpt\Leftrightarrow\left\{{}\begin{matrix}2xy^2+4x-8y=-2\\x^2y^3+2xy^2-4x+3y=2\end{matrix}\right.\Rightarrow x^2y^3+4xy^2-5y=0\Leftrightarrow y\left(x^2y^2+4xy-5\right)=0\Leftrightarrow y\left(xy-1\right)\left(xy+5\right)=0\Leftrightarrow\left[{}\begin{matrix}y=0\\xy-1=0\\xy+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=0\\xy=1\\xy=-5\end{matrix}\right.\)

\(+,y=0\Rightarrow2x=-1\Leftrightarrow x=\frac{-1}{2}.\text{thử lại ta thấy thỏa mãn}\)

\(+,xy=1\Rightarrow\left\{{}\begin{matrix}y+2x-4y=-1\\y+2y-4x+3y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3y=-1\\6y-4x=2\end{matrix}\right.\Leftrightarrow2x=3y-1\Leftrightarrow x=\frac{3y-1}{2};xy=1\Rightarrow3y^2-y=2\Leftrightarrow y^2-\frac{1}{6}.2.y=\frac{2}{3}\Leftrightarrow\left(y-\frac{1}{6}\right)^2=\frac{25}{36}\Leftrightarrow.......\)

\(+,xy=5.\text{giải tương tự trường hợp 2}\)


Các câu hỏi tương tự
Angela jolie
Xem chi tiết
Nguyễn Châu Mỹ Linh
Xem chi tiết
Mai Thị Lệ Thủy
Xem chi tiết
Nguyễn Châu Mỹ Linh
Xem chi tiết
Nguyễn Thành
Xem chi tiết
Ánh Dương
Xem chi tiết
Hồng Hà
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
Ánh Dương
Xem chi tiết