\(hpt\Leftrightarrow\left\{{}\begin{matrix}2xy^2+4x-8y=-2\\x^2y^3+2xy^2-4x+3y=2\end{matrix}\right.\Rightarrow x^2y^3+4xy^2-5y=0\Leftrightarrow y\left(x^2y^2+4xy-5\right)=0\Leftrightarrow y\left(xy-1\right)\left(xy+5\right)=0\Leftrightarrow\left[{}\begin{matrix}y=0\\xy-1=0\\xy+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=0\\xy=1\\xy=-5\end{matrix}\right.\)
\(+,y=0\Rightarrow2x=-1\Leftrightarrow x=\frac{-1}{2}.\text{thử lại ta thấy thỏa mãn}\)
\(+,xy=1\Rightarrow\left\{{}\begin{matrix}y+2x-4y=-1\\y+2y-4x+3y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3y=-1\\6y-4x=2\end{matrix}\right.\Leftrightarrow2x=3y-1\Leftrightarrow x=\frac{3y-1}{2};xy=1\Rightarrow3y^2-y=2\Leftrightarrow y^2-\frac{1}{6}.2.y=\frac{2}{3}\Leftrightarrow\left(y-\frac{1}{6}\right)^2=\frac{25}{36}\Leftrightarrow.......\)
\(+,xy=5.\text{giải tương tự trường hợp 2}\)