\(\Leftrightarrow\left(x+y\right)\left(x^2+y^2\right)+8xy-16\left(x+y\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(x^2+y^2\right)-4\left(x^2+y^2\right)+4\left(x^2+y^2+2xy\right)-16\left(x+y\right)=0\)
\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y-4\right)+4\left(x+y\right)^2-16\left(x+y\right)=0\)
\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y-4\right)+4\left(x+y\right)\left(x+y-4\right)=0\)
\(\Leftrightarrow\left(x+y-4\right)\left(x^2+y^2+4\left(x+y\right)\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=4\\x^2+y^2+4\left(x+y\right)=0\end{matrix}\right.\)
- TH1: \(x^2+y^2+4\left(x+y\right)=0\), do \(\left\{{}\begin{matrix}x+y\ge0\\x^2+y^2\ge0\end{matrix}\right.\)
Nên đẳng thức xảy ra khi và chỉ khi \(x=y=0\) (ko thỏa mãn)
TH2: \(x+y=4\)
\(\Rightarrow\sqrt{x^2+12}+5=3x+\sqrt{x^2+5}\)
\(\Leftrightarrow3x-2-\sqrt{x^2+12}+\sqrt{x^2+5}-3=0\)
\(\Leftrightarrow\frac{\left(3x-2\right)^2-\left(x^2+12\right)}{3x-2+\sqrt{x^2+12}}+\frac{x^2-4}{\sqrt{x^2+5}+3}=0\)
\(\Leftrightarrow\frac{4\left(x-2\right)\left(2x+1\right)}{3x-2+\sqrt{x^2+12}}+\frac{\left(x-2\right)\left(x+2\right)}{\sqrt{x^2+5}+3}=0\)
\(\Rightarrow x=2\)