Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
fghj

Giaỉ hệ phương trình :\(\left\{{}\begin{matrix}x^2+y^2+\frac{8xy}{x+y}=16\\\sqrt{x^2+12}+\frac{5}{2}\sqrt{x+y}=3x+\sqrt{x^2+5}\end{matrix}\right.\)

Nguyễn Việt Lâm
8 tháng 2 2020 lúc 9:47

\(\Leftrightarrow\left(x+y\right)\left(x^2+y^2\right)+8xy-16\left(x+y\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x^2+y^2\right)-4\left(x^2+y^2\right)+4\left(x^2+y^2+2xy\right)-16\left(x+y\right)=0\)

\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y-4\right)+4\left(x+y\right)^2-16\left(x+y\right)=0\)

\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y-4\right)+4\left(x+y\right)\left(x+y-4\right)=0\)

\(\Leftrightarrow\left(x+y-4\right)\left(x^2+y^2+4\left(x+y\right)\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=4\\x^2+y^2+4\left(x+y\right)=0\end{matrix}\right.\)

- TH1: \(x^2+y^2+4\left(x+y\right)=0\), do \(\left\{{}\begin{matrix}x+y\ge0\\x^2+y^2\ge0\end{matrix}\right.\)

Nên đẳng thức xảy ra khi và chỉ khi \(x=y=0\) (ko thỏa mãn)

TH2: \(x+y=4\)

\(\Rightarrow\sqrt{x^2+12}+5=3x+\sqrt{x^2+5}\)

\(\Leftrightarrow3x-2-\sqrt{x^2+12}+\sqrt{x^2+5}-3=0\)

\(\Leftrightarrow\frac{\left(3x-2\right)^2-\left(x^2+12\right)}{3x-2+\sqrt{x^2+12}}+\frac{x^2-4}{\sqrt{x^2+5}+3}=0\)

\(\Leftrightarrow\frac{4\left(x-2\right)\left(2x+1\right)}{3x-2+\sqrt{x^2+12}}+\frac{\left(x-2\right)\left(x+2\right)}{\sqrt{x^2+5}+3}=0\)

\(\Rightarrow x=2\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Thị Thu Hằng
Xem chi tiết
Lê Thị Thục Hiền
Xem chi tiết
Chuột yêu Gạo
Xem chi tiết
fghj
Xem chi tiết
fghj
Xem chi tiết
Trúc Nguyễn
Xem chi tiết
Chuột yêu Gạo
Xem chi tiết
poppy Trang
Xem chi tiết
Kun ZERO
Xem chi tiết