Lời giải:
Từ PT \((2)\Leftrightarrow xy+x+3y^2-3=0\)
\(\Leftrightarrow x(y+1)+3(y-1)(y+1)=0\)
\(\Leftrightarrow (y+1)(x+3y-3)=0\)
\(\Rightarrow \left[\begin{matrix} y=-1(*)\\ x+3y-3=0(**)\end{matrix}\right.\)
Với \((*)\), thay vào PT(1):
\(x^2-x-2=0\Leftrightarrow (x-2)(x+1)=0\Rightarrow \left[\begin{matrix} x=2\\ x=-1\end{matrix}\right.\)
Với $(**)$, thay \(x=3-3y\) có:
\((3-3y)^2+(3-3y)y-2y^2=0\)
\(\Leftrightarrow 4y^2-15y+9=0\) \(\Rightarrow \left[\begin{matrix} y=3\rightarrow x=-6\\ y=\frac{3}{4}\rightarrow x=\frac{3}{4}\end{matrix}\right.\)