Đặt x = a; \(\dfrac{1}{y}\) = b
Ta có: \(\left\{{}\begin{matrix}a^2+b^2+ab=3\\a+b+ab=3\end{matrix}\right.\)
=> Hệ đối xứng loại 1 => EZ to làm r :)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Đặt x = a; \(\dfrac{1}{y}\) = b
Ta có: \(\left\{{}\begin{matrix}a^2+b^2+ab=3\\a+b+ab=3\end{matrix}\right.\)
=> Hệ đối xứng loại 1 => EZ to làm r :)
Giải các hệ phương trình sau bằng phương pháp cộng đại số:
a) \(\left\{{}\begin{matrix}\sqrt{2}x-y=3\\x+\sqrt{2}y=\sqrt{2}\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{x}{2}-2y=\dfrac{3}{4}\\2x+\dfrac{y}{3}=-\dfrac{1}{3}\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\dfrac{2x-3y}{4}-\dfrac{x+y-1}{5}=2x-y-1\\\dfrac{x+y-1}{3}+\dfrac{4x-y-2}{4}=\dfrac{2x-y-3}{6}\end{matrix}\right.\)
giải hệ phương trình
a,\(\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\\left(x+y\right)+2\left(x-y\right)=5\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{4}{y}=2\\\dfrac{4}{x}-\dfrac{5}{y}=3\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}\dfrac{3}{2x-y}-\dfrac{6}{x+y}=-1\\\dfrac{1}{2x-y}-\dfrac{1}{x+y}=0\end{matrix}\right.\)
Giải hệ phương trình:
a) \(\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{5}{y}=\dfrac{-3}{2}\\\dfrac{5}{x}-\dfrac{2}{y}=\dfrac{8}{3}\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\dfrac{2}{x+y-1}-\dfrac{4}{x-y+1}=\dfrac{-14}{5}\\\dfrac{3}{x+y-1}+\dfrac{2}{x-y+1}=\dfrac{-13}{5}\end{matrix}\right.\)
Giải các hệ phương trình sau:
1, \(\left\{{}\begin{matrix}\left|x-1\right|+\dfrac{2}{y}=2\\-\left|x-1\right|+\dfrac{4}{y}=1\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}2\left|x-1\right|-\dfrac{5}{y-1}=-3\\\left|x-1\right|+\dfrac{2}{y-1}=3\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}\dfrac{1}{x-5}+\dfrac{6}{\sqrt{y}-2}=2\\\dfrac{2}{x-5}-\dfrac{1}{\sqrt{y}-2}=-9\end{matrix}\right.\)
4, \(\left\{{}\begin{matrix}\dfrac{7}{\sqrt{x+7}}-\dfrac{4}{\sqrt{y-6}}=\dfrac{5}{3}\\\dfrac{5}{\sqrt{x+7}}+\dfrac{3}{\sqrt{y-6}}=\dfrac{13}{6}\end{matrix}\right.\)
Tìm điều kiện giúp mình nhé!
Giải hệ phương trình :
a,\(\left\{{}\begin{matrix}\dfrac{3}{x+1}+\dfrac{1}{y-1}=2\\\dfrac{2}{x+1}-\dfrac{3}{y-1}=5\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}\dfrac{1}{x+1}-\dfrac{3}{y-1}=1\\\dfrac{2}{x+1}+\dfrac{4}{y-1}=3\end{matrix}\right.\)
Giải các hệ phương trình :
a) \(\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{5}{y}=-\dfrac{3}{2}\\\dfrac{5}{x}-\dfrac{2}{y}=\dfrac{8}{3}\end{matrix}\right.\);
b) \(\left\{{}\begin{matrix}\dfrac{2}{x+y-1}-\dfrac{4}{x-y+1}=-\dfrac{14}{5}\\\dfrac{3}{x+y-1}+\dfrac{2}{x-y+1}=-\dfrac{13}{5}\end{matrix}\right.\).
Giải hệ phương trình:
a) \(\left\{{}\begin{matrix}\dfrac{3}{4}x+\dfrac{2}{3}y=16\\\dfrac{5}{2}x-\dfrac{3}{5}y=11\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\sqrt{3}x-y=1\\5x+\sqrt{2}y=\sqrt{3}\end{matrix}\right.\)
1. Cho biết số nghiệm của mỗi hệ phương trình sau, giải thích vì sao?
a, \(\left\{{}\begin{matrix}2x+y=1\\3x-y=4\end{matrix}\right.\) b, \(\left\{{}\begin{matrix}x-5y=-3\\-x+5y=-7\end{matrix}\right.\) c, \(\left\{{}\begin{matrix}\dfrac{x}{3}+\dfrac{y}{12}=\dfrac{1}{2}\\-4x-y=6\end{matrix}\right.\) d, \(\left\{{}\begin{matrix}-3x-\dfrac{3}{2}y=-\dfrac{9}{2}\\2x+y=3\end{matrix}\right.\)
2. Cho biết số nghiệm của mỗi hệ phương trình sau, giải thích vì sao?
a,\(\left\{{}\begin{matrix}x+y=2\\3x+3y=2\end{matrix}\right.\) b, \(\left\{{}\begin{matrix}3x-2y=3\\-9x+6y=7\end{matrix}\right.\)
3. Cho biết số nghiệm của mỗi hệ phương trình sau, giải thích vì sao?
a, \(\left\{{}\begin{matrix}4x-8y=4\\-x+2y=-1\end{matrix}\right.\) b, \(\left\{{}\begin{matrix}\dfrac{1}{3}x-2y=\dfrac{2}{3}\\-x+6y=-2\end{matrix}\right.\)
Giải các hệ phương trình :
a) \(\left\{{}\begin{matrix}5\left(x+2y\right)=3x-1\\2x+4=3\left(x-5y\right)-12\end{matrix}\right.\);
b) \(\left\{{}\begin{matrix}4x^2-5\left(y+1\right)=\left(2x-3\right)^2\\3\left(7x+2\right)=5\left(2y-1\right)-3x\end{matrix}\right.\);
c) \(\left\{{}\begin{matrix}\dfrac{2x+1}{4}-\dfrac{y-2}{3}=\dfrac{1}{12}\\\dfrac{x+5}{2}=\dfrac{y+7}{3}-4\end{matrix}\right.\);
d) \(\left\{{}\begin{matrix}\dfrac{3s-2t}{5}+\dfrac{5s-3t}{3}=s+1\\\dfrac{2s-3t}{3}+\dfrac{4s-3t}{2}=t+1\end{matrix}\right.\).