Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
trần trác tuyền

Giải hệ phương trình: \(\left\{{}\begin{matrix}\sqrt{2x-y-1}+\sqrt{3y+1}=\sqrt{x}+\sqrt{x+2y}\\x^3-3x+2=2y^3-y^2\end{matrix}\right.\)

Nguyễn Việt Lâm
5 tháng 3 2020 lúc 21:49

ĐKXĐ: ...

Bình phương 2 vế pt đầu:

\(\Leftrightarrow\sqrt{\left(2x-y-1\right)\left(3y+1\right)}=\sqrt{x^2+2xy}\)

\(\Leftrightarrow x^2+3y^2-4xy+4y-2x+1=0\)

\(\Leftrightarrow\left(x-y-1\right)\left(x-3y-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=y+1\\x=3y+1\end{matrix}\right.\)

Thay xuống pt dưới được pt bậc 3 và bấm máy bình thường

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Bùi Đại Hiệp
Xem chi tiết
Nguyễn Thu Trà
Xem chi tiết
Nguyễn Thị Thu Hằng
Xem chi tiết
asuna
Xem chi tiết
Kim Trí Ngân
Xem chi tiết
poppy Trang
Xem chi tiết
Kun ZERO
Xem chi tiết
Hoàng Cường
Xem chi tiết
poppy Trang
Xem chi tiết