ĐK: y\(\ne0;x\ne0,-15,3\)
\(\left\{{}\begin{matrix}\frac{y}{x}-\frac{y}{x+15}=\frac{1}{5}\\\frac{y}{x-3}-\frac{y}{x}=\frac{1}{20}\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}y\left(\frac{1}{x}-\frac{1}{x+15}\right)=\frac{1}{5}\\y\left(\frac{1}{x-3}-\frac{1}{x}\right)=\frac{1}{20}\end{matrix}\right.\)\(\Leftrightarrow\frac{1}{5}:\left(\frac{1}{x}-\frac{1}{x+15}\right)=\frac{1}{20}:\left(\frac{1}{x-3}-\frac{1}{x}\right)\Leftrightarrow\frac{1}{5}:\frac{15}{x^2+15x}=\frac{1}{20}:\frac{3}{x^2-3x}\Leftrightarrow\frac{x^2+15x}{75}=\frac{x^2-3x}{60}\Leftrightarrow\frac{4x^2+60x}{300}=\frac{5x^2-15x}{300}\Leftrightarrow4x^2+60x=5x^2-15x\Leftrightarrow x^2-75x=0\Leftrightarrow x\left(x-75\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\left(ktm\right)\\x=75\left(tm\right)\end{matrix}\right.\)\(\Leftrightarrow\)\(y=\frac{1}{5}:\left(\frac{1}{75}-\frac{1}{75+15}\right)=90\)
Vậy (x;y)=(75;90)