ĐKXĐ: ...
\(\Leftrightarrow\left\{{}\begin{matrix}\left(\frac{x}{y+1}\right)^2+\left(\frac{y}{x+1}\right)^2=\frac{1}{2}\\\left(\frac{x}{y+1}\right)\left(\frac{y}{x+1}\right)=\frac{1}{4}\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}\frac{x}{y+1}=u\\\frac{y}{x+1}=v\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}u^2+v^2=\frac{1}{2}\\uv=\frac{1}{4}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}u^2+v^2=\frac{1}{2}\\2uv=\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow u^2-2uv+v^2=0\Rightarrow u=v\)
\(\Rightarrow\left[{}\begin{matrix}u=v=\frac{1}{2}\\u=v=-\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\frac{x}{y+1}=\frac{1}{2}\\\frac{y}{x+1}=\frac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}\frac{x}{y+1}=-\frac{1}{2}\\\frac{y}{x+1}=-\frac{1}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x=y+1\\2y=x+1\end{matrix}\right.\\\left\{{}\begin{matrix}2x=-y-1\\2y=-x-1\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-y=1\\-x+2y=1\end{matrix}\right.\\\left\{{}\begin{matrix}2x+y=-1\\x+2y=-1\end{matrix}\right.\end{matrix}\right.\) bạn tự bấm casio ra kết quả