ĐKXĐ: ..
Đặt \(\left\{{}\begin{matrix}\frac{1}{x+y-1}=u\\\frac{1}{2x-y+3}=v\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}4u-5v=-\frac{5}{2}\\3u+v=-\frac{7}{5}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u=-\frac{1}{2}\\v=\frac{1}{10}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y-1=-2\\2x-y+3=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\2x-y=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\frac{4}{x+y-1}-\frac{5}{2x-y+3}=\frac{-5}{2}\\\frac{3}{x+y-1}+\frac{1}{2x-y+3}=\frac{-7}{5}\end{matrix}\right.\)
đặt \(\frac{1}{x+y-1}=a\\ \frac{1}{2x-y+3}=b\)
ta có :
\(\left\{{}\begin{matrix}4a-5b=\frac{-5}{2}\\3a+b=\frac{-7}{5}\end{matrix}\right.\).......=>\(\left\{{}\begin{matrix}a=-\frac{1}{2}\\b=\frac{1}{10}\end{matrix}\right.\)
suy ra \(\left\{{}\begin{matrix}x+y-1=-2\\2x-y+3=10\end{matrix}\right.\\ =>\left\{{}\begin{matrix}x+y=-1\\2x-y=7\end{matrix}\right.\\ =>\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)
#Mai.T.Loan