Bài 2: Hệ hai phương trình bậc nhất hai ẩn. Luyện tập

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
PU PII MM

Giải hệ phương trình

\(\left\{{}\begin{matrix}\frac{4}{x+y-1}-\frac{5}{2x-y+3}=\frac{-5}{2}\\\frac{3}{x+y-1}+\frac{1}{2x-y+3}=\frac{-7}{5}\end{matrix}\right.\)

Nguyễn Việt Lâm
13 tháng 4 2020 lúc 20:42

ĐKXĐ: ..

Đặt \(\left\{{}\begin{matrix}\frac{1}{x+y-1}=u\\\frac{1}{2x-y+3}=v\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}4u-5v=-\frac{5}{2}\\3u+v=-\frac{7}{5}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u=-\frac{1}{2}\\v=\frac{1}{10}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+y-1=-2\\2x-y+3=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\2x-y=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)

💋Amanda💋
13 tháng 4 2020 lúc 20:45

\(\left\{{}\begin{matrix}\frac{4}{x+y-1}-\frac{5}{2x-y+3}=\frac{-5}{2}\\\frac{3}{x+y-1}+\frac{1}{2x-y+3}=\frac{-7}{5}\end{matrix}\right.\)

đặt \(\frac{1}{x+y-1}=a\\ \frac{1}{2x-y+3}=b\)

ta có :

\(\left\{{}\begin{matrix}4a-5b=\frac{-5}{2}\\3a+b=\frac{-7}{5}\end{matrix}\right.\).......=>\(\left\{{}\begin{matrix}a=-\frac{1}{2}\\b=\frac{1}{10}\end{matrix}\right.\)

suy ra \(\left\{{}\begin{matrix}x+y-1=-2\\2x-y+3=10\end{matrix}\right.\\ =>\left\{{}\begin{matrix}x+y=-1\\2x-y=7\end{matrix}\right.\\ =>\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)

#Mai.T.Loan


Các câu hỏi tương tự
Nguyễn Ngọc Trâm
Xem chi tiết
Ngọc Băng
Xem chi tiết
Cam Anh
Xem chi tiết
Nguyễn Đức Bảo
Xem chi tiết
Trần Thiên Minh
Xem chi tiết
Vũ
Xem chi tiết
trần Thị Lê Na
Xem chi tiết
An Nhiên
Xem chi tiết
Dương Dương
Xem chi tiết