Giải hệ phương trình \(\left\{{}\begin{matrix}\dfrac{y}{x+5}\\\dfrac{y}{\left(x-1\right)+\dfrac{4}{15}}\end{matrix}\right.\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Giải hệ phương trình \(\left\{{}\begin{matrix}\dfrac{y}{x+5}\\\dfrac{y}{\left(x-1\right)+\dfrac{4}{15}}\end{matrix}\right.\)
Giải hệ phương trình : \(\left\{{}\begin{matrix}\dfrac{y}{x+\dfrac{5}{3}}\\\dfrac{y}{\left(x-1\right)+\dfrac{4}{15}}\end{matrix}\right.\)
a) Giải \(\left\{{}\begin{matrix}\dfrac{2}{x+3}-\dfrac{5}{y-2}=1\\\dfrac{x+4}{x+3}+\dfrac{y+3}{y-2}=4\end{matrix}\right.\)
b) Giải : \(x^2+2\sqrt{3}x-6=0\)
a) Giải \(\left\{{}\begin{matrix}x\sqrt{y}+y\sqrt{x}=30\\x\sqrt{x}+y\sqrt{y}=35\end{matrix}\right.\)
b) Cho 0 < a < b < c < d. Chứng minh \(\left(b+c\right)\left(\dfrac{1}{b}+\dfrac{1}{c}\right)< \dfrac{\left(a+d\right)^2}{ad}\)
1) Giải phương trình:\(\sqrt{5x-x^2}+2x^2-10x+6=0\)
2) Giải hệ phương trình:\(\left\{{}\begin{matrix}x+y+xy=3\\\sqrt{x}+\sqrt{y}=2\end{matrix}\right.\)
Tính:
\(15\dfrac{1}{4}:\left(\dfrac{-7}{5}\right)-25\dfrac{1}{4}\cdot\left(\dfrac{-7}{5}\right)\)
38-2y=4/3
yx-4.xx+6
\(\left(\dfrac{x}{y}\right)^{\left(4x-9\right)}\)
((2x+y)6)8
x2y.x4z
Giải:
\(\left\{{}\begin{matrix}y\left(x^2-x\right)\left(2-y\right)=20\\x^2+y^2-x-2y=19\end{matrix}\right.\)
Giải: \(\left\{{}\begin{matrix}x+y+xy=2+3\sqrt{2}\\x^2+y^2=6\end{matrix}\right.\)
đề bài cho như sau :
Cho a,b,c > 0 thỏa mãn :
ab + bc + ca + 2abc = 1
CMR : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge4\left(a+b+c\right)\)
Cách làm như sau :
Từ điều kiện đề bài suy ra tồn tại các số x,y,z >0 thỏa mãn :
( a , b , c ) = \(\left(\dfrac{x}{y+z};\dfrac{y}{x+z};\dfrac{z}{x+y}\right)\) Khi đó , BĐT cần chứng minh tương đương với : \(\dfrac{x+y}{z}+\dfrac{y+z}{x}+\dfrac{z+x}{y}\ge4\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)\Leftrightarrow\left(\dfrac{x}{y}+\dfrac{x}{z}\right)+\left(\dfrac{y}{x}+\dfrac{y}{x}\right)+\left(\dfrac{z}{x}+\dfrac{z}{y}\right)\ge4\left(\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\right)\)(*) BĐT trên hiển nhiên đúng do theo BĐT Cauchy-Schwarz thì : \(x\left(\dfrac{1}{y}+\dfrac{1}{z}\right)\ge\dfrac{4x}{y+z}\) \(y\left(\dfrac{1}{x}+\dfrac{1}{z}\right)\ge\dfrac{4y}{x+z}\) \(z\left(\dfrac{1}{y}+\dfrac{1}{x}\right)\ge\dfrac{4x}{y+z}\) Cộng theo vế thì ta thu được (*) , do đó ta có đpcm Dấu "=" xảy ra khi x = y = z => a = b = c = 1/2 CHO MÌNH HỎI LÀ MÌNH KHÔNG HIỂU CHỖ hiển nhiên đúng khi cauchy swat làm sao lại lớn hơn hoặc bằng cái đấy , AI GIẢI THÍCH CHO MÌNH VỚI VÀ THÊM CẢ CHỖ ĐẦU BÀI Ý ĐÚNG 1 PHÁT RA X,Y,Z LÀ SAO ? GIẢI THÍCH NHANH SẼ NHẬN GPRút gọn \(\left[\dfrac{x^2-y^2}{xy}-\dfrac{1}{x+y}\left(\dfrac{x^2}{y}-\dfrac{y^2}{x}\right)\right]:\dfrac{x-y}{x}\)