\(2x^2-3xy-2y^2=0\Leftrightarrow\left[{}\begin{matrix}x=2y\\2x=y\end{matrix}\right.\)
- Với \(x=2y\)
\(\sqrt{3y+1}-\sqrt{2y+2}=1\)
\(\Leftrightarrow\sqrt{3y+1}=\sqrt{2y+2}+1\)
\(\Leftrightarrow3y+1=2y+3+2\sqrt{2y+2}\)
\(\Leftrightarrow2\sqrt{2y+2}=y-2\left(y\ge2\right)\)
\(\Leftrightarrow4\left(2y+2\right)=\left(y-2\right)^2\)
\(\Leftrightarrow y^2-12y-4=0\Rightarrow\left\{{}\begin{matrix}y=6+2\sqrt{10}\\x=12+4\sqrt{10}\end{matrix}\right.\)