Biết hệ Phương trình
\(\hept{\begin{cases}y^2+5\sqrt{x}+5=0\\\sqrt{x+2}=\sqrt{y^2+2y+3}-\frac{1}{5}y^2+y\end{cases}}\)
có hai nghiệm là \(\left(x_1;y_1\right);\left(x_2;y_2\right)\)
Tính \(A=x_1+x_2+y_1+y_2\)
Hệ phương trình \(\hept{\begin{cases}y^2-\left|xy\right|+2=0\\8-x^2=\left(x+2y\right)^2\end{cases}}\)
có các nghiệm là \(\left(x_1;y_1\right);\left(x_2;y_2\right)\)
với \(x_1;y_1;x_2;y_2\) là các số vô tỉ
tìm \(S=x_1^2+x_2^2+y_1^2+y_2^2\)
Cho HPT \(\left\{{}\begin{matrix}x^3y^2-2x^2y-x^2y^2+2xt+3x-1=0\\y^2+x^{2017}=y+3m\end{matrix}\right.\)
tìm m để PT có 2 nghiệm phân biệt sao cho \(\left(x_1+y_2\right)\left(x_2+y_1\right)+3=0\)
Tìm tham số m để hệ phương trình sau có nghiệm thực:
\(\begin{cases}X\sqrt{Y}+Y\sqrt{X}+2\left(\sqrt{X}+\sqrt{Y}\right)=12\sqrt{XY}\\X+2\sqrt{Y}+4\left(\frac{1}{X}+\frac{1}{\sqrt{Y}}\right)=m\left(\frac{X+2}{\sqrt{X}}\right)\end{cases}\)
Cho phương trình \(x^2-mx+2=0\) tìm m để phương trình có 2 nghiệm phân biệt để biểu thức \(\left(x_1+x_2\right)^4-17\left(x_1+x_2\right)^2x_1^2x_2^2-6\left(x_1+x_2\right)x_1^3x_2^3\)đạt giá trị nhỏ nhất
Giải hệ phương trình: \(\begin{cases}\frac{x^3+x^2+x}{x+1}=\left(y+3\right)\sqrt{\left(x+1\right)\left(y+2\right)}\\3x^2-8x-3=4\left(x+1\right)\sqrt{y+2}\end{cases}\)
Giải hệ phương trình :
\(\begin{cases}3\sqrt{y^3\left(2x-y\right)}+\sqrt{x^2\left(5y^2-4x^2\right)}=4y^2\left(1\right)\\\sqrt{2-x}+\sqrt{y+1}+2=x+y^2\left(2\right)\end{cases}\)
Giải hệ phương trình :
\(\begin{cases}x^2\left(x-3\right)-y\sqrt{y-3}=-2\\3\sqrt{x-2}=\sqrt{y\left(y+8\right)}\end{cases}\) \(\left(x,y\in R\right)\)
Cho phương trình : \(x^2+\left(3m+2\right)x+3m=0\).
Tìm m để phương trình có hai nghiệm phân biệt \(x_1,x_2\) sao cho biểu thức \(Q=\left(x_1+1\right)^4+\left(x_2+1\right)^4\) đạt giá trị nhỏ nhất .