\(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\)
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)
\(2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\)
\(2A-A=\left(1+\dfrac{1}{2}+...+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}\right)\)
\(A=1-\dfrac{1}{2^{10}}\)
Đặt:
\(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\)
\(A=\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)
\(2A=2\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\right)\)
\(2A=1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\)
\(2A-A=\left(1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\right)\)
\(A=1-\dfrac{1}{2^{10}}\)
\(A=1-\dfrac{1}{1024}=\dfrac{2023}{2024}\)
Đặt \(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\)
\(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\)
\(\Rightarrow A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)
\(\Rightarrow2A=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^{10}}\right)\)
\(\Rightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^9}\)
\(\Rightarrow2A-A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}-\dfrac{1}{2}-\dfrac{1}{2^2}-\dfrac{1}{2^3}-...-\dfrac{1}{2^{10}}\)
\(\Rightarrow A=1-\dfrac{1}{2^{10}}\)
\(\Rightarrow A=1-\dfrac{1}{1024}\)
\(\Rightarrow A=\dfrac{1023}{1024}\)
Vậy \(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}=\dfrac{1023}{1024}\)