Chương IV - Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
SA Na

Giải giúp mình vài hệ pt này nha

thanks nhiều

1.\(\left\{{}\begin{matrix}\sqrt{x^2+x+y+1}+x+\sqrt{y^2+x+y+1}+y=15\\\sqrt{x^2+x+y+1}-x+\sqrt{y^2+x+y+1}-y=2\end{matrix}\right.\)

2.\(\left\{{}\begin{matrix}\left(1-\dfrac{12}{y+3x}\right)\sqrt{x}=2\\\left(1+\dfrac{12}{y+3x}\right)\sqrt{y}=6\end{matrix}\right.\)

3.\(\left\{{}\begin{matrix}x^3+y^3=8\\x+y+2xy=2\end{matrix}\right.\)

4.\(\left\{{}\begin{matrix}x^3+1=2y\\y^3+1=2x\end{matrix}\right.\)

5.\(\left\{{}\begin{matrix}x^3-3x=y^3-3y\\x^6+y^6=1\end{matrix}\right.\)

6.\(\left\{{}\begin{matrix}x^2-2xy+3y^2=9\\2x^2-13xy+15y^2=0\end{matrix}\right.\)

Hà Nam Phan Đình
1 tháng 1 2018 lúc 10:06

1. Đề này là 18 chứ không phải 15 nhé

\(\left\{{}\begin{matrix}\sqrt{x^2+x+y+1}+x+\sqrt{y^2+x+y+1}+y=18\left(1\right)\\\sqrt{x^2+x+y+1}-x+\sqrt{y^2+x+y+1}-y=2\left(2\right)\end{matrix}\right.\)

Lấy (1) + (2) và (1) - (2) ta được hệ mới

\(\left\{{}\begin{matrix}\sqrt{x^2+x+y+1}+\sqrt{y^2+x+y+1}=10\\x+y=8\end{matrix}\right.\)

\(\Rightarrow x=8-y\)

\(\Rightarrow\sqrt{x^2+9}+\sqrt{y^2+9}=10\)\(\Leftrightarrow\sqrt{x^2+9}=10-\sqrt{y^2+9}\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\x^2+9=100-20\sqrt{y^2+9}+y^2+9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\x^2=100-20\sqrt{y^2+9}+y^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\\left(8-y\right)^2=100-20\sqrt{y^2+9}+y^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\9y^2-72y+144=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)

Hà Nam Phan Đình
1 tháng 1 2018 lúc 10:28

2. Dễ thấy x = y = 0 không phải là nghiệm của phương trình

HPT\(\Leftrightarrow\left\{{}\begin{matrix}1-\dfrac{12}{y+3x}=\dfrac{2}{\sqrt{x}}\left(1\right)\\1+\dfrac{12}{y+3x}=\dfrac{6}{\sqrt{y}}\left(2\right)\end{matrix}\right.\)

Lấy (1) + (2) ; (1) - (2) ta được

\(\left\{{}\begin{matrix}1=\dfrac{1}{\sqrt{x}}+\dfrac{3}{\sqrt{y}}\left(3\right)\\\dfrac{12}{y+3x}=\dfrac{3}{\sqrt{y}}-\dfrac{1}{\sqrt{x}}\left(4\right)\end{matrix}\right.\)

Lấy ( 3) nhân (4)

\(\dfrac{12}{y+3x}=\dfrac{9}{y}-\dfrac{1}{x}=\dfrac{9x-y}{xy}\)

\(\Leftrightarrow27x^2-6xy-y^2=0\Leftrightarrow\left(9x+y\right)\left(3x-y\right)=0\)

\(\Rightarrow y=3x\)

đến đây thì dễ rồi

Hà Nam Phan Đình
1 tháng 1 2018 lúc 10:34

3. Đây là hệ đối xứng loại I

\(\left\{{}\begin{matrix}\left(x+y\right)^3-3xy\left(x+y\right)=8\\\left(x+y\right)+2xy=2\end{matrix}\right.\)

Đặt S = a + b ; P = ab (\(S^2\ge4P\) )

xong giải ra thôi mà

Hà Nam Phan Đình
1 tháng 1 2018 lúc 10:35

4. Đây là hệ đối xứng loại II

Lấy phương trình trên trừ phương trình dưới có nhân tử chung là x - y

Hà Nam Phan Đình
1 tháng 1 2018 lúc 10:46

5. Đối xứng loại I nhưng phải biến đổi 1 chút

Hà Nam Phan Đình
1 tháng 1 2018 lúc 10:48

6. Hệ đẳng cấp; phân tích phương trình thứ hai thành nhân tử tìm mối liên hệ của x,y rồi thay vào


Các câu hỏi tương tự
Lê Đức Mạnh
Xem chi tiết
nam do duy
Xem chi tiết
SA Na
Xem chi tiết
nam do duy
Xem chi tiết
Nguyễn Châu Mỹ Linh
Xem chi tiết
Chii Phương
Xem chi tiết
Nguyễn Châu Mỹ Linh
Xem chi tiết
Nguyễn Anh Khoa
Xem chi tiết
nam do duy
Xem chi tiết