\(x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1\)
Do \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0;\forall x\\1>0\end{matrix}\right.\) \(\Rightarrow\left(x-3\right)^2+1>0;\forall x\)
\(x^2+5x+7=\left(x^2+2.\dfrac{5}{2}x+\dfrac{25}{4}\right)+\dfrac{3}{4}=\left(x+\dfrac{5}{2}\right)^2+\dfrac{3}{4}\)
Do \(\left\{{}\begin{matrix}\left(x+\dfrac{5}{2}\right)^2\ge0;\forall x\\\dfrac{3}{4}>0\end{matrix}\right.\) \(\Rightarrow\left(x+\dfrac{5}{2}\right)^2+\dfrac{3}{4}>0;\forall x\in R\)