b) |x + 4| = 2x - 5 ⇔ x + 4 = 2x - 5 khi x + 4 ≥ 0 ⇔ x ≥ -4
⇔ x = 9 ( thoả mãn điều kiện x ≥ -4)
|x + 4| = 2x - 5 ⇔ -x - 4 = 2x - 5 khi x + 4 < 0 ⇔ x < -4
⇔ 3x = 1
⇔ x = (không thoả mãn điều kiện x < -4)
Vậy phương trình có nghiệm x = 9
d) |x - 4| + 3x = 5
|x - 4| + 3x = 5 ⇔ x - 4 + 3x = 5 khi x ≥ 4
⇔ 4x = 9
⇔ x = (không thoả mãn điều kiện x ≥ 4)
|x - 4| + 3x = 5 ⇔ -x + 4 + 3x = 5 khi x < 4
⇔ 2x = 1
⇔ x =
a) |x - 7| = 2x + 3
|x - 7| = 2x + 3 ⇔ x - 7 = 2x + 3 khi x - 7 ≥ 0 ⇔ x ≥ 7
⇔ x = -10 (không thoả mãn điều kiện x ≥ 7)
|x - 7| = 2x + 3 ⇔ -x + 7 = 2x + 3 khi x - 7 < 0 ⇔ x < 7
⇔ 3x = 4
⇔ x = (thoả mãn điều kiện x < 7)
Vậy phương trình có nghiệm x =
b) |x + 4| = 2x - 5 ⇔ x + 4 = 2x - 5 khi x + 4 ≥ 0 ⇔ x ≥ -4
⇔ x = 9 ( thoả mãn điều kiện x ≥ -4)
|x + 4| = 2x - 5 ⇔ -x - 4 = 2x - 5 khi x + 4 < 0 ⇔ x < -4
⇔ 3x = 1
⇔ x = (không thoả mãn điều kiện x < -4)
Vậy phương trình có nghiệm x = 9
Xem thêm tại: http://loigiaihay.com/bai-37-trang-51-sgk-toan-8-tap-2-c43a6061.html#ixzz4A8Ezjc8J
|x + 3| = 3x - 1
|x + 3| = 3x - 1 ⇔ x + 3 = 3x - 1 khi x + 3 ≥ 0 ⇔ x ≥ -3
⇔ 3x = 4
⇔ x = (thoả mãn điều kiện x ≥ -3)
|x + 3| = 3x - 1 ⇔ -x - 3 = 3x - 1 khi x < -3
⇔ 4x = -2
⇔ x = (không thoả mãn điều kiện x < -3)
Vậy phương trình có nghiệm x =