a) cosx - √3sinx = √2 ⇔ cosx - tansinx = √2
⇔ coscosx - sinsinx = √2cos ⇔ cos(x + ) =
⇔
b) 3sin3x - 4cos3x = 5 ⇔ sin3x - cos3x = 1.
Đặt α = arccos thì phương trình trở thành
cosαsin3x - sinαcos3x = 1 ⇔ sin(3x - α) = 1 ⇔ 3x - α = + k2π
⇔ x = , k ∈ Z (trong đó α = arccos).
c) Ta có sinx + cosx = √2cos(x - ) nên phương trình tương đương với
2√2cos(x - ) - √2 = 0 ⇔ cos(x - ) =
⇔
d) 5cos2x + 12sin2x -13 = 0 ⇔
Đặt α = arccos thì phương trình trở thành
cosαcos2x + sinαsin2x = 1 ⇔ cos(2x - α) = 1
⇔ x = + kπ, k ∈ Z (trong đó α = arccos).
Dương Hoàng Minh làm kiểu j mà 1 nấy bài trong 2p ?
a) cosx – √3sinx = √2 ⇔ cosx – tan π/3sinx = √2 ⇔ cos π/3cosx – sinπ/3sinx = √2cosπ/3 ⇔ cos(x +π/3) = √2/2 ⇔ b) 3sin3x – 4cos3x = 5 ⇔ 3/5sin3x – 4/5cos3x = 1. Đặt α = arccos thì phương trình trở thành cosαsin3x – sinαcos3x = 1 ⇔ sin(3x – α) = 1 ⇔ 3x – α = π/2 + k2π ⇔ x = π/6 +α/3 +k(2π/3) , k ∈ Z (trong đó α = arccos3/5).