Câu 3. Giải các phương trình sau bằng cách đưa về dạng ax+b= 0
1. a, 3x-2=2x-3; b, 3-4y+24+6y=y+27+3y
c, 7-2x=22-3x; d, 8x-3=5x+12
e, x-12+4x=25+2x-1; f, x+2x+3x-19=3x+5
g, 11+8x-3=5x-3+x; h, 4-2x+15=9x+4-2
2. a, 5-(x-6)=4(3-2); b, 2x (x+2)2-8x2=2(x-2) (x2+2x-4)
c, 7-(2x+4)=-(x+4); d, (x-2)3+(3x-1) (3x+1)=(x+1)3
e, (x+1) (2x-3)=(2x-1) (x+5); f, (x-1)3-x(x+1)2=5x (2-x)-11 (x+2)
g, (x-1)-(2x-1)=9-x; h, (x-3) (x+4)-2(3x-2)=(x-4)2
i, x(x+3)2-3x=(x+2)3+1; j, (x+1) (x2-x+1)-2x=x(x+1) (x-1)
3. a, 1,2-(x-0,8)=-2(0,9+x); b, 3,6-0,5 (2x+1)=x-0,25 (2-4x)
c, 2,3x-2 (0,7+2x)= 3,6-1,7x; d, 0,1-2 (0,5t-0,1)=2 (t-2,5)-0,7
e, 3+2,25x+2,6= 2x+5+0,4x; f, 5x+3,48-2,35x= 5,38-2,9x+10,42
ĐỀ CƯƠNG ÔN TẬP ĐẠI SỐ LỚP 8 HỌC KÌ I
Năm học 2015 - 2016
Đại số Chương I
* Dạng thực hiện phép tính
Bài 1. Tính:
a. x2(x – 2x3)
b. (x2 + 1)(5 – x)
c. (x – 2)(x2 + 3x – 4)
d. (x – 2)(x – x2 + 4)
e. (x2 – 1)(x2 + 2x)
f. (2x – 1)(3x + 2)(3 – x)
g. (x + 3)(x2 + 3x – 5)
h. (xy – 2).(x3 – 2x – 6)
i. (5x3 – x2 + 2x – 3).(4x2 – x + 2)
Bài 2. Tính:
a. (x – 2y)2
b. (2x2 +3)2
c. (x – 2)(x2 + 2x + 4)
d. (2x – 1)3
Bài 3: Rút gọn biểu thức
a. (6x + 1)2 + (6x – 1)2 – 2(1 + 6x)(6x – 1)
b. 3(22 + 1)(24 + 1)(28 + 1)(216 + 1)
c. x(2x2 – 3) – x2(5x + 1) + x2.
4d 3x(x – 2) – 5x(1 – x) – 8(x2 – 3)
Bài 4. Tính nhanh:
a. 101^2
b. 97.103
c. 77^2 + 232^2 + 77.46
d. 105^2 – 5^2
e. A = (x – y)(x2 + xy + y2) + 2y3 tại x = và y =
* Dạng tìm x
Bài 5: Tìm x, biết
1. (x – 2)2 – (x – 3)(x + 3) = 6
. 2. 4(x – 3)2 – (2x – 1)(2x + 1) = 10
4. (x – 4)2 – (x – 2)(x + 2) = 6.
5. 9 (x + 1)2 – (3x – 2)(3x + 2) = 10
* Dạng toán phân tích đa thức thành nhân tử
Bài 6. Phân tích các đa thức sau thành nhân tử
a. 1 – 2y + y^2
b. (x + 1)^2 – 25
c. 1 – 4x^2
d. 8 – 27x^3
e. 27 + 27x + 9x^2 + x^3
f. 8x^3 – 12x^2y + 6xy^2 – y^3
g. x^3 + 8y^3
Bài 7 . Phân tích các đa thức sau thành nhân tử:
a. 3x^2 – 6x + 9x^2
b. 10x(x – y) – 6y(y – x)
c. 3x^2 + 5y – 3xy – 5x
d. 3y^2 – 3z^2 + 3x^2 + 6xy
e. 16x^3 + 54y^3
f. x^2 – 25 – 2xy + y^2
g. x^5 – 3x^4 + 3x^3 – x^2.
Bài 8: Phân tích đa thức thành nhân tử
1. 5x^2 – 10xy + 5y^2 – 20z^2
2. 16x – 5x^2 – 3
3. x^2 – 5x + 5y – y^2
4. 3x^2 – 6xy + 3y^2 – 12z^2
5. x^2 + 4x + 3
6. (x2 + 1)^2 – 4x^2
7. x^2 – 4x – 5
Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0
1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)
c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)
e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\)
g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h, \(\frac{x+4}{5}.x+4=\frac{x}{3}-\frac{x-2}{2}\)
i, \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\); k, \(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\)
m, \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\); n, \(\frac{1}{4}\left(x+3\right)=3-\frac{1}{2}\left(x+1\right).\frac{1}{3}\left(x+2\right)\)
p, \(\frac{x}{3}-\frac{2x+1}{6}=\frac{x}{6}-x\); q, \(\frac{2+x}{5}-0,5x=\frac{1-2x}{4}+0,25\)
r, \(\frac{3x-11}{11}-\frac{x}{3}=\frac{3x-5}{7}-\frac{5x-3}{9}\); s, \(\frac{9x-0,7}{4}-\frac{5x-1,5}{7}=\frac{7x-1,1}{6}-\frac{5\left(0,4-2x\right)}{6}\)
t, \(\frac{2x-8}{6}.\frac{3x+1}{4}=\frac{9x-2}{8}+\frac{3x-1}{12}\); u, \(\frac{x+5}{4}-\frac{2x-3}{3}=\frac{6x-1}{3}+\frac{2x-1}{12}\)
v, \(\frac{5x-1}{10}+\frac{2x+3}{6}=\frac{x-8}{15}-\frac{x}{30}\); w, \(\frac{2x-\frac{4-3x}{5}}{15}=\frac{7x\frac{x-3}{2}}{5}-x+1\)
giải các phương trình sau:
a)5-(x-6)=4(3-2x) b)\(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)
c)\(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\) e)\(x-\dfrac{2x-5}{5}+\dfrac{x+8}{6}=7-\dfrac{x-1}{3}\)
d)x2-5x+6=0 f)(x2-4)-(x-2)(3-2x)=0 g)(2x+5)2=(x+2)2
Bài 2. Giải các phương trình sau
a, \(\frac{x}{3}-\frac{5x}{6}-\frac{15x}{12}=\frac{x}{4}-5\)
b, \(\frac{8x-3}{4}-\frac{3x-2}{2}=\frac{2x-1}{2}+\frac{x+3}{4}\)
c, \(\frac{x-1}{2}-\frac{x+1}{15}-\frac{2x-13}{6}=0\)
d,\(\frac{3\left(3-x\right)}{8}+\frac{2\left(5-x\right)}{3}=\frac{1-x}{2}-2\)
e, \(\frac{3\left(5x-2\right)}{4}-2=\frac{7x}{3}-5\left(x-7\right)\)
f, \(\frac{x+5}{2}+\frac{3-2x}{4}=x-\frac{7+x}{6}\)
g, \(\frac{x-3}{11}+\frac{x+1}{3}=\frac{x+7}{9}-1\)
h, \(\frac{3x-0,4}{2}+\frac{1,5-2x}{3}=\frac{x+0,5}{5}\)
Câu 4. Tìm giá trị của x sao cho các biểu thức A và B sau đây có giá trị bằng nhau
a, A=(x-3) (x+4)-2(3x-2) và B=(x-4)2
b, A=(x+2) (x-2)+3x2 và B=(2x+1)2+2x
c, A=(x-1) (x2+x+1)-2x và B=x(x-1) (x+1)
d, A=(x+1)3-(x-2)3 và B=(3x-1) (3x+1)
Câu 5. Giải các phương trình sau
a, \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\); b, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)
c, \(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right)\left(2x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}=0\)
a,\(\dfrac{x+1}{x-3}+\dfrac{-2x^2+2x}{x^2-9}+\dfrac{x-1}{x+3}\)
b,\(\dfrac{1-2x}{6x^3y}+\dfrac{3+2y}{6x^3y}+\dfrac{2x-4}{6x^3y}\)
c,\(\dfrac{5}{2x^2y}+\dfrac{3}{5xy^2}+\dfrac{x}{3y^3}\)
d,\(\dfrac{5}{4\left(x+2\right)}+\dfrac{8-x}{4x^2+8x}\)
c,\(\dfrac{x^2+2}{x^3+1}+\dfrac{2}{x^2+x+1}+\dfrac{1}{1-x}\)
Bài 1: tìm x
(3x + 2)² = 2x .(2x +3) +4
Bài 2: cho A, B và Q là các đa thức ( B ≠ 0) Tìm Q
(1)A= 8 - x³ - 2x + x²; B = 2-x và A= B .Q
(2) A= 2x³ - 3x² + 3x - 9 ; B= 2x-3 và A= B .Q
(3) A = 3x⁴ +2x³ - 4x² - 6x - 15 ; B= x² - 3 và A= B .Q
(4) A= 8x³ - 18x² + 5x - m chia hết cho đa thứcB = 2x - 3
(5) A= 3x³ - 10x² + 17x - 12
B= 3x - 4
(6) A= 2x³ - x² + 5x - 12
B= 2x - 3
(7) A= 8x³ - 1 ; B= 2x - 1
(8) 3x⁴ + 2x³ - 4x² - 6x - 15
B= x² - 3
(9) A= x⁴ - 4x³ - x² + 24x - 30
B= x² - 6
(10) A=x⁴ - 3x³ + 8x² - 15x + 15 B= x² - 6
(11) A= 3x² - 10x² + 17x - 12
B= 3x - 4
(12) A= 2x³ + 9x² + 9x - 7
B= 2x - 1
(13) A= 2x³ + x² + 3 - x
B= 2x + 3
Giúp mk nha