Giải các phương trình sau: 1) 4x - 9 = 0 2) - 2x + 50 = 0 3) 3x + 11 = 0
Giải các phương trình sau: 1) 4x - 9 = 0 2) - 2x + 50 = 03) 3x + 11 = 0
Cho phương trình: 2x2-6x-m+7=0. Với giá trị nào của m thì phương trình có một trong các nghiệm bằng –4.
cho phương trình \(x^2-6\left(m-1\right)x+9\left(m-3\right)=0\left(1\right)\)
a, giải phương trình (1) khi m=2
b, tìm các giá trị của m để phương trình (1) có 2 nghiệm phân biệt thoả mãn \(x_1+x_2=2x_1.x_2\)
Cho phương trình: x² - mx + m - 1 = 0(x là ẩn) a) Chứng minh rằng phương trình luôn có nghiệm với mọi giá trị của m b) Tìm giá trị của m để phương trình có 2 nghiệm x1, x2 thoả mãn: x1 - 2x2 = 1
Bài 3: Cho phương trình ẩn x: x2 – x + 1 + a = 0 (1)
a) Giải phương trình đã cho với a = 0.
b) Tìm các giá trị của m để phương trình (1) có nghiệm.
Bài 5: Cho phương trình x2 – 4x + 2m - 3 = 0 a) Tìm điều kiện của m để phương trình có 2 nghiệm x1, X2 phân biệt thoả tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau. b) Tìm m để phương trình có 2 nghiệm X), x2 thoả mãn điều kiện x1 = 3x2
Cho phương trình: \(^{x^2-4x+5m-2=0}\)( với m là tham số)
Tính giá trị của m để phương trình trên có ngiệm x1, x2 thỏa mãn x1^2x2+x1x2^2=12
( x một mũ hai nhân x hai +x1 nhân x2 mũ hai nha)
Câu 1: Giải phương trình và hệ phương trình
a) \(\sqrt{4x^2-4x+9}=3\)
b) \(\left\{{}\begin{matrix}3x-y=5\\2y-x=0\end{matrix}\right.\)
Câu 2:
a) Cho hai đường thẳng (d\(_1\)): y = 2x - 5 và (d\(_2\)): y = 4x - m (m là tham số). Tìm tất cả các giá trị của tham số m để (d\(_1\)) và (d\(_2\)) cắt nhau tại một điểm trên trục hoành Ox
b) Rút gọn biểu thức: \(P=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{2x}{9-x}\right):\left(\dfrac{\sqrt{x}-1}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\) với x > 0, x \(\ne\) 9, x \(\ne\) 25