Bài 3: Giải hệ phương trình bằng phương pháp thế

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Giải các hệ phương trình :

a) \(\left\{{}\begin{matrix}1,7x-2y=3,8\\2,1x+5y=0,4\end{matrix}\right.\);

b) \(\left\{{}\begin{matrix}\left(\sqrt{5}+2\right)x+y=3-\sqrt{5}\\-x+2y=6-2\sqrt{5}\end{matrix}\right.\).

Nguyen Thuy Hoa
16 tháng 6 2017 lúc 14:12

Hệ hai phương trình bậc nhất hai ẩn

Lê Minh Thư
4 tháng 1 2020 lúc 10:50

a)

\(\left\{{}\begin{matrix}1,7x-2y=3,8\\2,1x+5y=0,4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}17x-20y=38\\21x+50y=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}85x-100y=190\\42x+100y=8\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}127x=198\\21x+50y=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\frac{198}{127}\\21.\frac{198}{127}+50y=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\frac{198}{127}\\50y=4-\frac{4158}{127}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\frac{198}{127}\\50y=-\frac{3650}{127}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\frac{198}{127}\\y=-\frac{73}{127}\end{matrix}\right.\)

Vậy hệ pt có nghiệm duy nhất là (\(\left(\frac{198}{127};-\frac{73}{127}\right)\)

b)

\(\left\{{}\begin{matrix}\left(\sqrt{5}+2\right)x+y=3-\sqrt{5}\\-x+2y=6-2\sqrt{5}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2.\left(\sqrt{5}+2\right)x+2y=6-2\sqrt{5}\\-x+2y=6-2\sqrt{5}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2(\sqrt{5}+2)x=6+2\sqrt{5}-6-2\sqrt{5}\\-x+2y=6-2\sqrt{5}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2\left(\sqrt{5}+2\right)x=0\\-x+2y=6-2\sqrt{5}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=0\\0+2y=6-2\sqrt{5}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\frac{2\left(3-\sqrt{5}\right)}{52}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=0\\y=3-\sqrt{5}\end{matrix}\right.\)

Vậy hệ pt có nghiệm duy nhất là \(\left(0;3-\sqrt{5}\right)\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Tam Akm
Xem chi tiết
Xuân Huy
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
hoàng thiên
Xem chi tiết
Bảo Hân
Xem chi tiết
Thanh Nguyễn
Xem chi tiết
Phạm Quỳnh Anh
Xem chi tiết
Vịtt Tên Hiền
Xem chi tiết
Trần Hiếu
Xem chi tiết