a/đk: \(-\frac{1}{2}< x< \frac{1}{4}\)
\(\sqrt{1-4x}>\sqrt{2x+1}\Leftrightarrow1-4x>2x+1\\ \Leftrightarrow6x>0\Leftrightarrow x>0\)
kết hợp với đkxđ =>\(0< x< \frac{1}{4}\)
b/ đk:\(5< x< 9\)
\(\sqrt{x-5}-\sqrt{9-x}>1\Leftrightarrow3-2\sqrt{\left(x-5\right)\left(9-x\right)}>0\)
\(\Leftrightarrow x^2-14x+\frac{189}{4}< 0\)\(\Leftrightarrow\left(x-7\right)^2< \frac{7}{4}\Leftrightarrow\frac{-\sqrt{7}}{2}+7< x< \frac{\sqrt{7}}{2}+7\)
kết hợp vs đkxđ=> \(\frac{-\sqrt{7}}{2}+7< x< \frac{\sqrt{7}}{2}+7\)
c/đk: \(x\ge\sqrt{7}+3orx\le-\sqrt{7}+3\)
\(\sqrt{x^2-6x+2}>x+1\Leftrightarrow x^2-6x+2>x^2+2x+1\left(đk:x\ge-1\right)\)
\(\Leftrightarrow8x>1\Leftrightarrow x>\frac{1}{8}\)
kết hợp vs đk=> \(x\ge\sqrt{7}+3orx\le-\sqrt{7}+3\)