giải bất phương trình:
\(\sqrt{x+1}\le\dfrac{x^2-x-2\sqrt[3]{2x+1}}{\sqrt[3]{2x+1}-3}\)
Bài 1: Cho bất phương trình \(4\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+m-3\). Xác định m để bất phương trình nghiệm \(\forall x\in[-1;3]\)
Bài 2: Cho bất phương trình \(x^2-6x+\sqrt{-x^2+6x-8}+m-1\ge0\). Xác định m để bất phương trình nghiệm đúng \(\forall x\in[2;4]\)
Giải bất phương trình:
a) \(\frac{1-\sqrt{21-4x-x^2}}{x+4}< \frac{1}{2}\)
b) \(\frac{1-\sqrt{8x-3}}{4x}\ge4\)
c) \(4\left(x+1\right)^2\le\left(2x+10\right)\left(1-\sqrt{3+2x}\right)^2\)
d) \(\left(\sqrt{x+4}+2\right)\left(\sqrt{2x+6}-1\right)< x\)
Giải các bất phương trình sau:
1) \(x^3+\left(3x^2-4x-4\right)\sqrt{x+1}\le0\)
2) \(\sqrt{2x^2-6x+8}-\sqrt{x}\le x-2\)
3) \(4\left(x+1\right)^2< \left(2x+10\right)\left(1-\sqrt{3+2x}\right)\)
4) \(4\sqrt{x+1}+2\sqrt{2x+3}\le\left(x-1\right)\left(x^2-2\right)\)
1) Giải bất phương trình sau:
a) |1-3x|≤7
b) \(\sqrt{3x^2-2x-5}\)≤x+1
2) Bằng cách lập bảng xét dấu, giải bất phương trình:
\(\frac{\left(2x-1\right)\left(3-x\right)}{x^2-5x+4}\)>0
3) Giải phương trình
x+4-\(\sqrt{14x-1}\)=\(\frac{\sqrt{10x-9}-1}{x}\)
Giải các bất phương trình sau:
1. \(\sqrt{5x+1}-\sqrt{4x-1}< 3\sqrt{x}\)
2. \(\sqrt{x+2}-\sqrt{3-x}< \sqrt{5-2x}\)
3 \(\dfrac{\sqrt{12+x-x^2}}{x-11}\ge\dfrac{\sqrt{12+x-x^2}}{2x-9}\)
4.\(\sqrt{x^2-8x+15}+\sqrt{x^2+2x-15}\le\sqrt{4x^2-18x+18}\).
Giải các bất phương trình, hệ phương trình
a) \(\dfrac{x^2-4x+3}{2x-3}\ge x-1\)
b) \(3x^2-\left|4x^2+x-5\right|>3\)
c)\(4x-\left|2x^2-8x-15\right|\le-1\)
d)\(x+3-\sqrt{21-4x-x^2}\ge0\)
e)\(\left\{{}\begin{matrix}x\left(x+5\right)< 4x+2\\\left(2x-1\right)\left(x+3\right)\ge4x\end{matrix}\right.\)
f)\(\dfrac{1}{x^2-5x+4}\le\dfrac{1}{x^2-7x+10}\)
Giải bất phương trình
\(3\sqrt{x}+\frac{3}{2\sqrt{x}}< 2x+\frac{1}{2x}-7\)
Câu 1: Tìm m để \(mx^2-2mx-1\le0,\forall x\in\left[0;3\right]\)
Câu 2: Giải bất phương trình:
a) \(2\left(x-1\right)\sqrt{x^2+2x-1}\le x^2-2x-1\)
b) \(\frac{3-2\sqrt{x^2+3x+2}}{1-2\sqrt{x^2-x+1}}>1\)
c)\(\frac{x^2-x}{\sqrt{x^4+3x^2}-2x}\le1\)
d)\(\sqrt{x-2}-2\ge\sqrt{2x-5}-\sqrt{x+1}\)
e) \(\sqrt{x+1}-\sqrt{3x^2-4x-15}+\sqrt{x-3}>0\)