ĐKXĐ: \(x>0\)
\(\Leftrightarrow\frac{16}{x}+2x+1+8\sqrt{\frac{2x+1}{x}}\ge2x+17\)
\(\Leftrightarrow\frac{2}{x}+\sqrt{2+\frac{1}{x}}-2\ge0\)
Đặt \(\sqrt{2+\frac{1}{x}}=t>0\Rightarrow\frac{1}{x}=t^2-2\)
\(2\left(t^2-2\right)+t-2\ge0\)
\(\Leftrightarrow2t^2+t-6\ge0\) \(\Rightarrow\left[{}\begin{matrix}t\ge\frac{3}{2}\\t\le-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2+\frac{1}{x}}\ge\frac{3}{2}\Rightarrow\frac{1}{x}\ge\frac{1}{4}\Rightarrow x\le4\)
\(\Rightarrow0< x\le4\)