Căn cứ vào đồ thị hàm số \(y=\sin x\), tìm những giá trị của x trên đoạn \(\left[-\dfrac{3\pi}{2};2\pi\right]\) để hàm số đó :
a) Nhận giá trị bằng -1
b) Nhận giá trị âm
tìm giá trị lớn nhất nhỏ nhất
a, y=\(sin^2x-2sinx+3cos^2x\) trên \(\left[0;\dfrac{\Pi}{2}\right]\)
b,\(y=sinx-cosx+sin2x+5\) trên \(\left[0;\dfrac{\Pi}{4}\right]\)
c,\(y=sinx-cosx+sinxcosx-3\)
Tìm giá trị nhỏ nhất, giá trị lớn nhất
y = 3sin(3x+\(\dfrac{\Pi}{6}\)) + 4cos (3x + \(\dfrac{\Pi}{6}\))
Tìm giá trị lớn nhất của các hàm số sau :
a) \(y=\sqrt{2\left(1+\cos x\right)}+1\)
b) \(y=3\sin\left(x-\dfrac{\pi}{6}\right)-2\)
38.Tìm giá trị lớn nhất nhỏ nhất của hàm số y=3(3sinx+4cosx)\(^2\)+4(3sinx+4cosx)+1
Chia các đoạn sau thành hai đoạn, trên một đoạn hàm số \(y=\sin x\) tăng, còn trên đoạn kia hàm số đó giảm :
a) \(\left[\dfrac{\pi}{2};2\pi\right]\)
b) \(\left[-\pi;0\right]\)
c) \(\left[-2\pi;-\pi\right]\)
Chu kì của hàm số y=tan(\(\dfrac{\pi}{5}\)-3x)
Giá trị lớn nhất , nhỏ nhất của hàm số y= \(sinx+sin\left(x+\frac{\pi}{3}\right)\) bằng a và b . Khi đó S = a+b+ab bằng ?
Tìm GTLN, GTNN của hàm số :
a, y= x/2+ sin2x trên đoạn [-pi/2, pi/2]
b, y=sinx căn bậc hai cosx + cosx căn bậc hai sinx