đơn giản biểu thức
a \(\dfrac{3-2\sqrt{2}}{1-\sqrt{2}}\)
b \(\dfrac{x\sqrt{y}-y\sqrt{x}}{x-y}\) (x,y >0)
c \(\dfrac{5\sqrt{16}-\sqrt{15}}{6-2\sqrt{6}}\)
d \(\dfrac{x\sqrt{x}-y\sqrt{y}}{x-y}\) ( x,y>0)
Bài 1: phân tích thành nhân tử:
A= \(x-2\sqrt{3x}+3\) (x ≥ 0)
B= \(x+2\sqrt{x}-3\) (x ≥ 0)
C= \(x\sqrt{x}-1\) (x ≥ 0)
D= \(2x-3\sqrt{xy}-5y\) (x ≥ 0, y ≥ 0)
Bài 2: cho \(x+\sqrt{1+x^2}=\sqrt{1+y^2}-y\)
Tính x+y.
Bài 4: tìm giá trị lớn nhất :
A= \(\sqrt{x+1}+\sqrt{5-x}\)
bài 1: rút gọn các biểu thức.
a) \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-(\sqrt{x}-\sqrt{y})^2\)
b) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}(x\ge0)\)
c) \(\dfrac{x-1}{\sqrt{y}-1}\sqrt{\dfrac{(y-2\sqrt{y}+1)^2}{(x-1)^4}}(x\ne1,y\ne1,y>0)\)
bài 2:rút gọn và tính.
a) \(\sqrt{\dfrac{\sqrt{a}-1}{\sqrt{b}+1}:}\sqrt{\dfrac{\sqrt{b}-1}{\sqrt{a}+1}với}a=7,25;b=3,25\)
b) \(\sqrt{15a^2-8a\sqrt{15}+16}vớia=\sqrt{\dfrac{3}{5}}+\sqrt{\dfrac{5}{3}}\)
c) \(\sqrt{10a^2-4a\sqrt{10}+4}vớia=\sqrt{\dfrac{2}{5}}+\sqrt{\dfrac{5}{2}}\)
d) \(\sqrt{a^2+2\sqrt{a^2-1}}-\sqrt{a^2-2\sqrt{a^2-1}}(a=\sqrt{5})\)
bài 3: rút gọn các biểu thức.
a) \(\sqrt{9(x-5)^2}(x\ge5)\)
b) \(\sqrt{x^2.(x-2)^2}(x< 0)\)
c)\(\dfrac{\sqrt{108x^3}}{\sqrt{12x}}(x>0)\)
d)\(\dfrac{\sqrt{13x^4y^6}}{\sqrt{208x^6y^6}}(x< 0:y\ne0)\)
ai giúp mik vs ạ, cảm ơn !
1) Rút gọn
a) A=\(\dfrac{x+\sqrt{xy}}{y+\sqrt{xy}}\)
b) B= \(\sqrt{\dfrac{\left(a-b\right)^3.b^3}{c}}\) .\(\sqrt{\dfrac{bc^3}{\left(a-b\right)}}\) ( với a-b>0, c<0)
c) C=(\(\sqrt{3+2\sqrt{2}}\) - \(\sqrt{3-2\sqrt{2}}\) ).(\(\sqrt{3-2\sqrt{2}}\) +\(\sqrt{3+2\sqrt{2}}\)
2) Giải phuong trình
a) \(\sqrt{x^2-4}\) -\(\sqrt{x-2}\) =0
b)\(\sqrt{3x^2+12x+16}\) +\(\sqrt{y^2-4y+13}\) =5
B1: rút gọn:
a, \(\sqrt{4-2\sqrt{3}}-\sqrt{3}\)
b, \(\sqrt{11+6\sqrt[]{2}}-3+\sqrt{2}\)
c, \(x-4+\sqrt{16-8x+x^2}\) với x > 4
d, \(\dfrac{x^2-5}{x+\sqrt{5}}\) x khác \(-\sqrt{5}\)
e, \(\dfrac{x^2+2\sqrt{2}x+2}{x+\sqrt{2}}\) x khác \(-\sqrt{2}\)
g, \(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\)
giúp em với ạ , em cảm ơn
Rút gọn:
a. \(\sqrt{2a}\) \(\times\) \(\sqrt{18a}\) (a \(\ge\)0)
b. \(\sqrt{3a\times27ab^2}\)
c. 2y2 \(\times\) \(\sqrt{\dfrac{x^4}{4y^2}}\) (y < 0)
d. \(\dfrac{y}{x}\) \(\times\) \(\sqrt{\dfrac{x^2}{y^4}}\) (x > 0 ; y \(\ne\)0)
e. \(\sqrt{\dfrac{9a^2}{16}}\)
f. \(\sqrt{10.16a^2}\) (a < 0)
g. \(\sqrt{a^4}\left(3-a\right)^2\) (a \(\ge\) 3)
h. \(\sqrt{\dfrac{2a^2b^4}{98}}\)
Bài 1 : Rút gọn biểu thức sau :
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
Bài 2 : Chứng minh đẳng thức sau :
\(\sqrt{8+2\sqrt{10+2\sqrt{5}}}.\sqrt{8-2\sqrt{10+2\sqrt{5}}}=2\sqrt{5}-2\)
Bài 3 : Cho biểu thức E = \(\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right):\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)\)
a) Rút gọn biẻu thức E
b) Tính giá trị của E khi x = \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
P = \(\frac{\sqrt{x}}{\sqrt{x}—1}+\frac{3}{\sqrt{x+1}}-\frac{6\sqrt{x}—4}{x—1}\)
a) Rút gọn P
b) Tính giá trị của P tại x = 9, x = \(4-2\sqrt{3}\)
c) Tìm x để P < 0
d) Tìm giá trị nguyên của x để P có giá trị nguyên
Giúp mình nhé
Bài: Giải pt:
a) \(\sqrt{X^2-9}-\sqrt{4x-12}=0\)
b) \(\sqrt{1-x}+\sqrt{x}=1\)
c) \(\sqrt{x+3}+\sqrt{x+8}=5\)
d) \(\sqrt{16-32x}-\sqrt{12x}=\sqrt{3x}+\sqrt{9-18x}\)