\(\Leftrightarrow cosx=m\)
Do \(-1\le cosx\le1\) nên pt vô nghiệm khi và chỉ khi: \(\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\)
\(\Leftrightarrow cosx=m\)
Do \(-1\le cosx\le1\) nên pt vô nghiệm khi và chỉ khi: \(\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\)
Cho phương trình \(\left(cosx+1\right)\left(4cos2x-mcosx\right)=msin^2x\) . Số các giá trị nguyên của m để phương trình có đúng 2 nghiệm thuộc \(\left[0;\dfrac{2\pi}{3}\right]\) là
1, cho phương trình \(sin2x-\left(2m+\sqrt{2}\right)\left(sinx+cosx\right)+2m\sqrt{2}+1=0\) tìm các giá trị m để phương trình có đúng 2 nghiệm \(x\in\left(0;\dfrac{5\Pi}{4}\right)\)
2,tìm tất cả các giá trị thực của tham số m để phương trình \(cos2x+\left(2m+1\right)sinx-m-1=0\) có đúng 2 nghiệm thuộc khoảng \(\left(\dfrac{\Pi}{2};\dfrac{3\Pi}{2}\right)\)
3, cho phương trình \(cos^2x-2mcosx+6m-9=0\) tìm các giá trị m để phương trình có nghiệm thuộc khoảng \(\left(-\dfrac{\Pi}{2};\dfrac{\Pi}{2}\right)\)
Gọi \(S\) là tập hợp các giá trị nguyên của tham số \(m\) để phương trình \(\sqrt{2019}sinx-cosx=2m\) có nghiệm. Tổng tất các các phẩn tử của S bằng
A. -1
B. 2
C. 1
D. 0
Tìm tất cả các giá trị của tham số m để phương trình msinx - mcosx = 2 vô nghiệm
Cho phương trình : cos2x+4cosx+m=0 . Tìm tẩ cả các giá trị tham số m để phương trình đã cho có nghiệm
Điều kiện của tham số m để phương trình msin2x + \(\sqrt{3}\) cos2x = m + 1 vô nghiệm là ?
Cho phương trình (1-Sinx)(Cos2x + 3mSinx+Sinx-1)=\(mCos^2x\) (m là tham số). Tìm các giá trị thực của m để phương trình có 6 nghiệm khác nhau thuộc khoảng \(\left(-\dfrac{\Pi}{2};2\Pi\right)\)
Cho phương trình cos2x-(2m+1)cosx+m+1=0
a, GPT với m=3/2
b, Tìm m để pt có nghiệm thuộc [pi/2;3pi/2]
Cho phương trình cos2x-(2m+1)cosx+m+1=0
a, GPT với m=3/2
b, Tìm m để pt có nghiệm thuộc [pi/2;3pi/2]