Hệ phương trình đối xứng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Liana Phan

Giả sử (x,y) là nghiệm của hệ \(\left\{{}\begin{matrix}x+y=2a-1\\x^2+y^2=a^2+2a-3\end{matrix}\right.\)Tìm a để tích xy nhỏ nhất

Nguyễn Việt Lâm
15 tháng 4 2020 lúc 17:40

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=2a-1\\\left(x+y\right)^2-2xy=a^2+2a-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=2a-1\\2xy=\left(2a-1\right)^2-\left(a^2+2a-3\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=2a-1\\xy=\frac{3a^2-6a+4}{2}\end{matrix}\right.\)

Hệ pt đã cho có nghiệm \(\Leftrightarrow\left(2a-1\right)^2\ge4\left(\frac{3a^2-6a+4}{2}\right)\)

\(\Leftrightarrow4a^2-4a+1\ge6a^2-12a+8\)

\(\Leftrightarrow2a^2-8a+7\le0\Rightarrow\frac{4-\sqrt{2}}{2}\le a\le\frac{4+\sqrt{2}}{2}\)

Khi đó: \(f\left(a\right)=xy=\frac{3a^2-6a+4}{2}=\frac{3}{2}a^2-3a+2\)

Xét \(f\left(a\right)\) trên \(\left[\frac{4-\sqrt{2}}{2};\frac{4+\sqrt{2}}{2}\right]\)

\(\frac{3}{2}>0;\) \(\frac{3}{2.\frac{3}{2}}=1< \frac{4-\sqrt{2}}{2}\Rightarrow f\left(a\right)\) đồng biến trên \(\left[\frac{4-\sqrt{2}}{2};\frac{4+\sqrt{2}}{2}\right]\)

\(\Rightarrow f\left(a\right)_{min}=f\left(\frac{4-\sqrt{2}}{2}\right)=\frac{11-6\sqrt{2}}{4}\)


Các câu hỏi tương tự
Anh Khương Vũ Phương
Xem chi tiết
Lưu Thị Thảo Ly
Xem chi tiết
Hoàng Đức Thắng
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
Lưu Thị Thảo Ly
Xem chi tiết
Lê Mai
Xem chi tiết
Phương
Xem chi tiết
đấng ys
Xem chi tiết
Thắng
Xem chi tiết