Bài 3: Nhị thức Niu-tơn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
A Lan

Giả sử \(\left(1+x+x^2+x^3+...+x^{10}\right)^{11}=a_0+a_1x+a_2x^2+a_3x^3+...+a_{110}x^{110}\) với \(a_0,a_1,a_2,...,a_{10}\) là các hệ số.

Tính giá trị của tổng : \(T=C^0_{11}a_{11}-C^1_{11}a_{10}+C^2_{11}a_9-C^3_{11}a_8+...+C^{10}_{11}a_1-C^{11}_{11}a_0\) ?

Nguyễn Việt Lâm
11 tháng 10 2019 lúc 0:09

Xét \(x\ne1\)

\(\left(1+x+...+x^{10}\right)^{11}=a_0+a_1x+...+a_{110}x^{110}\)

\(\Leftrightarrow\left(x-1\right)^{11}\left(1+x+...+x^{10}\right)^{11}=\left(x-1\right)^{11}\left(a_1+a_1x+...+a_{110}x^{110}\right)\)

\(\Leftrightarrow\left(x^{11}-1\right)^{11}=\left(x-1\right)^{11}\left(a_0+a_1x+...+a_{110}x^{110}\right)\)

\(VP=\left(x-1\right)^{11}\left(a_0+a_1x+...\right)=\left(\sum\limits^{11}_{k=0}C_{11}^kx^k\left(-1\right)^{11-k}\right)\left(a_0+a_1x+...\right)\) (1)

Ta thấy tổng các hệ số của \(x^{11}\) trong khai triển (1) là:

\(C_{11}^0\left(-1\right)^{11}.a_{11}+C_{11}^1\left(-1\right)^{10}a_{10}+C_{11}^2\left(-1\right)^9a_9+...+C_{11}^{11}\left(-1\right)^0a_0\)

\(=-C_{11}^0a_{11}+C_{11}^1a_{10}-C_{11}^2a_9+...+C_{11}^{11}a_0=-T\)

\(VT=\sum\limits^{11}_{k=0}C_{11}^k\left(x^{11}\right)^k.\left(-1\right)^{11-k}\)

Hệ số của \(x^{11}\) trong khai triển trên là \(C_{11}^1\left(-1\right)^{10}=C_{11}^1=11\)

\(VT=VP\Rightarrow-T=11\Rightarrow T=-11\)


Các câu hỏi tương tự
Big City Boy
Xem chi tiết
Phạm Dương Ngọc Nhi
Xem chi tiết
xin gam
Xem chi tiết
Big City Boy
Xem chi tiết
lu nguyễn
Xem chi tiết
Tam Cao Duc
Xem chi tiết
Rimuru Tempest
Xem chi tiết
Mai Anh
Xem chi tiết
Violet
Xem chi tiết