Tính các tích phân sau :
a) \(\int\limits^1_0\left(y^3+3y^2-2\right)dy\)
b) \(\int\limits^4_1\left(t+\dfrac{1}{\sqrt{t}}-\dfrac{1}{t^2}\right)dt\)
c) \(\int\limits^{\dfrac{\pi}{2}}_0\left(2\cos x-\sin2x\right)dx\)
d) \(\int\limits^1_0\left(3^s-2^s\right)^2ds\)
e) \(\int\limits^{\dfrac{\pi}{3}}_0\cos3xdx+\int\limits^{\dfrac{3\pi}{2}}_0\cos3xdx+\int\limits^{\dfrac{5\pi}{2}}_{\dfrac{3\pi}{2}}\cos3xdx\)
g) \(\int\limits^3_0\left|x^2-x-2\right|dx\)
h) \(\int\limits^{\dfrac{5\pi}{4}}_{\pi}\dfrac{\sin x-\cos x}{\sqrt{1+\sin2x}}dx\)
i) \(\int\limits^4_0\dfrac{4x-1}{\sqrt{2x+1}+2}dx\)
Hãy chỉ ra kết quả nào dưới đây đúng :
a) \(\int\limits^{\dfrac{\pi}{2}}_0\sin xdx+\int\limits^{\dfrac{3\pi}{2}}_{\dfrac{\pi}{2}}\sin xdx+\int\limits^{2\pi}_{\dfrac{3\pi}{2}}\sin xdx=0\)
b) \(\int\limits^{\dfrac{\pi}{2}}_0\left(\sqrt[3]{\sin x}-\sqrt[3]{\cos x}\right)dx=0\)
c) \(\int\limits^{\dfrac{1}{2}}_{-\dfrac{1}{2}}\ln\dfrac{1-x}{1+x}dx=0\)
d) \(\int\limits^2_0\left(\dfrac{1}{1+x+x^2+x^3}+1\right)dx=0\)
Áp dụng phương pháp tính tích phân, hãy tính các tích phân sau :
a) \(\int\limits^{\dfrac{\pi}{2}}_0x\cos2xdx\)
b) \(\int\limits^{\ln2}_0xe^{-2x}dx\)
c) \(\int\limits^1_0\ln\left(2x+1\right)dx\)
d) \(\int\limits^3_2\left|\ln\left(x-1\right)-\ln\left(x+1\right)\right|dx\)
e) \(\int\limits^2_{\dfrac{1}{2}}\left(1+x-\dfrac{1}{x}\right)e^{x+\dfrac{1}{x}}dx\)
g) \(\int\limits^{\dfrac{\pi}{2}}_0x\cos x\sin^2xdx\)
h) \(\int\limits^1_0\dfrac{xe^x}{\left(1+x\right)^2}dx\)
i) \(\int\limits^e_1\dfrac{1+x\ln x}{x}e^xdx\)
Tính các tích phân sau :
a) \(\int\limits^{\dfrac{1}{2}}_{-\dfrac{1}{2}}\sqrt[3]{\left(1-x\right)^2dx}\)
b) \(\int\limits^{\dfrac{\pi}{2}}_0\sin\left(\dfrac{\pi}{4}-x\right)dx\)
c) \(\int\limits^2_{\dfrac{1}{2}}\dfrac{1}{x\left(x+1\right)}dx\)
d) \(\int\limits^2_0x\left(x+1\right)^2dx\)
e) \(\int\limits^2_{\dfrac{1}{2}}\dfrac{1-3x}{\left(x+1\right)^2}dx\)
g) \(\int\limits^{\dfrac{\pi}{2}}_{-\dfrac{\pi}{2}}\sin3x\cos5xdx\)
Giả sử hàm số \(f\left(x\right)\) liên tục trên đoạn \(\left[-a;a\right]\)
Chứng minh rằng :
\(\int\limits^a_{-a}f\left(x\right)dx=\left\{{}\begin{matrix}2\int\limits^a_0f\left(x\right)dx;nếuflàhàmchẵn\\0;nếuflàhàmlẻ\end{matrix}\right.\)
Áp dụng để tính \(\int\limits^2_{-2}\ln\left(x+\sqrt{1+x^2}\right)dx\)
Tính các tích phân sau đây :
a) \(\int\limits^{\dfrac{\pi}{2}}_0\left(x+1\right)\cos\left(x+\dfrac{\pi}{2}\right)dx\)
b) \(\int\limits^1_0\dfrac{x^2+x+1}{x+1}\log_2\left(x+1\right)dx\)
c) \(\int\limits^1_{\dfrac{1}{2}}\dfrac{x^2-1}{x^4+1}dx\) (đặt \(t=x+\dfrac{1}{x}\) )
d) \(\int\limits^{\dfrac{\pi}{2}}_0\dfrac{\sin3xdx}{3+4\sin x-\cos2x}dx\)
Cho hàm số f(x) liên tục trên R và \(\int\limits^6_2f\left(x\right)dx=6\). Tính tích phân I = \(\int\limits^2_0f\left(2x+2\right)dx\)
Sử dụng phương pháp tính tích phân từng phần, hãy tính :
a) \(\int\limits^{\dfrac{\pi}{2}}_0\left(x+1\right)\sin x.dx\)
b) \(\int\limits^e_1x^2lnxdx\)
c) \(\int\limits^1_0ln\left(1+x\right)dx\)
d) \(\int\limits^1_0\left(x^2-2x-1\right)e^{-x}dx\)
Tính các tích phân sau :
a) \(\int\limits^2_0\left|1-x\right|dx\)
b) \(\int\limits^{\dfrac{\pi}{2}}_0\sin^2xdx\)
c) \(\int\limits^{ln2}_0\dfrac{e^{2x+1}+1}{e^x}dx\)
d) \(\int\limits^{\pi}_0\sin2x\cos^2xdx\)