Câu 1: Cho các hàm số y=f(x), y=g(x), y=\(\frac{f\left(x\right)+2}{g\left(x\right)+1}\)đều có hệ số góc tiếp tuyến tại điểm có hoành độ x=1 giống nhau là k#0. Biết f(1)=a, g(1)=b# -1. Tìm a.
Câu 2: Cho đồ thị (C) y=\(\frac{x+1}{x-2}\)và đường thẳng d: y=x+m. Khi d cắt (C) tại hai điểm phân biệt và tiếp tuyến với (C) Tại hai điểm này song song với nhau thì m bằng bao nhiêu?
Câu 3: Cho hàm số \(y=x^3-3x+2\)
có đồ thị (C). Gọi d là đường thẳng đi qua A(3;20) và có hệ số góc m. Tìm giá trị của m để đường thẳng d cắt (C) tại 3 điểm phân biệt.
Cho hàm số y=\(\frac{x+3}{x+1}\) (C).
a, Khảo sát và vẽ đồ thị hàm số (C).
b, Biết đường thẳng d: y= 2x-3 cắt (C) tại 2 điểm phân biệt A và B. Tính độ dài AB và diện tích tam giác OAB.
c, Cm đường thẳng đen ta: y= 2x+m luôn cắt (C) tại 2 điểm phân biệt M và N.
Cho hàm số :
\(y=x^3-\left(m+4\right)x^2-4x+m\) (1)
a) Tìm các điểm mà đồ thị của hàm số (1) đi qua với mọi giá trị của m
b) Chứng minh rằng với mọi giá trị của m, đồ thị của hàm số (1) luôn luôn có cực trị
c) Khảo sát sự biến thiên và vẽ đồ thị (C) của (1) khi m = 0
d) Xác định k để (C) cắt đường thẳng \(y=kx\) tại 3 điểm phân biệt
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số :
\(y=-x^3+3x+1\)
b) Chỉ ra phép biến hình (C) thành đồ thị (C') của hàm số
\(y=\left(x+1\right)^3-3x-4\)
c) Dựa vào đồ thị (C') biện luận theo m số nghiệm của phương trình
\(\left(x+1\right)^3=3x+m\)
d) Viết phương trình tiếp tuyến (d) của đồ thị (C') biết tiếp tuyến đó vuông góc với đường thẳng \(y=-\dfrac{x}{9}+1\)
Cho hàm số :
\(y=\dfrac{x^4}{4}-2x^2-\dfrac{9}{4}\)
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho
b) Viết phương trình tiếp tuyến của (C) tại các giao điểm của nó với trục \(Ox\)
c) Biện luận theo k số giao điểm của (C) với đồ thị (P) của hàm số
\(y=k-2x^2\)
Cho hàm số \(y=-x^3+3x-2\) (C)
a) Khảo sát và vẽ đồ thị hàm số
b) Tìm m để phương trình: \(x^3-3x+2m+1=0\) có 3 nghiệm phân biệt
c) Viết phương trình tiếp tuyến với (C) tại điểm có hoành độ \(x=0\)
Cho hàm số :
\(y=\dfrac{2x+1}{2x-1}\)
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho
b) Xác định tọa độ giao điểm của đồ thị (C) với đường thẳng \(y=x+2\)
cho hàm số \(y=\frac{-x+m}{x+2}\) (c)
a.khảo sát sự biến thiên và vẽ đồ thị hàm số khi m=1
b.tìm số thực dương m để đường thẳng (d):2x+2y-1=0 cắt (c) tại hai điểm A và B sao cho tam giác OAB có diện tích bằng 1 trong đó O là gốc tọa độ .
Cho hàm số \(y=\dfrac{(m+1)x-2m+1}{x-1}\) ( \(m\) là tham số) có đồ thị là (G).
a) Xác định \(m\) để đồ thị (G) đi qua điểm (0 ; -1)
b) Khảo sát sự biến thiên và vẽ đồ thị của hàm số vớ \(m\) tìm được
c) Viết phương trình tiếp tuyến của đồ thị trên tại giao điểm của nó với trục tung