Giải:
Đặt \(\frac{x}{2015}=\frac{y}{2016}=\frac{z}{2017}=k\)
\(\Rightarrow\left\{\begin{matrix}x=2015k\\y=2016k\\z=2017k\end{matrix}\right.\)
\(\Rightarrow\left(2015k-2017k\right)^3\div\left[\left(2015k-2016k\right)^2\left(2016k-2017k\right)\right]\)
\(=\left(-2k\right)^3\div\left[-k^2\left(-k\right)\right]\)
\(=-8k^3\div\left(-k\right)^3\)
\(=8\)
Vậy \(\left(x-z\right)^3\div\left[\left(x-y\right)^2\left(y-z\right)\right]=8\)