Chương 5: ĐẠO HÀM

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyen thi be

f(x) = \(\sqrt{\left(1-x^2\right)^3}\) giải pt f(x)+f'(x)-\(\sqrt{1-x^2}\)=0

Hoàng Tử Hà
30 tháng 4 2021 lúc 18:27

\(f'\left(x\right)=\dfrac{3}{2}\left(1-x^2\right)^{\dfrac{1}{2}}\left(1-x^2\right)'=-2x.\dfrac{3}{2}\sqrt{1-x^2}=-3x\sqrt{1-x^2}\)

\(pt\Leftrightarrow\sqrt{\left(1-x^2\right)^3}-3x\sqrt{1-x^2}-\sqrt{1-x^2}=0\)

\(DKXD:x^2\le1\Leftrightarrow-1\le x\le1\)

\(\sqrt{1-x^2}=t\Rightarrow pt\Leftrightarrow t^3-3xt-t=0\)

\(t=0\) la nghiem cua pt \(\Rightarrow x=\pm1\)

\(t\ne0\Rightarrow pt\Leftrightarrow t^2-3x-1=0\)

\(\Leftrightarrow1-x^2-3x-1=0\Leftrightarrow x\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\left(loai\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm1\end{matrix}\right.\)


Các câu hỏi tương tự
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Charlotte Grace
Xem chi tiết
Trùm Trường
Xem chi tiết
Trần Thị Hằng
Xem chi tiết
Hồng Minh
Xem chi tiết
Julian Edward
Xem chi tiết
dan nguyen chi
Xem chi tiết